Skip to main content

Visualization of Nuclear and Cytoplasmic Long Noncoding RNAs at Single-Cell Level by RNA-FISH

  • Protocol
  • First Online:
Book cover Capturing Chromosome Conformation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2157))

Abstract

The RNA fluorescence in situ hybridization (RNA-FISH) methodology offers an attractive strategy to deepen our knowledge on the long noncoding RNA biology. In this chapter, we provide a comprehensive overview of the current RNA-FISH protocols available for imaging nuclear and cytoplasmic lncRNAs within cells or tissues. We describe a multicolor approach optimized for the simultaneous visualization of these transcripts with their specific molecular interactors, such as proteins or DNA sequences. Common challenges faced by this methodology such as cell-type specific permeabilization, target accessibility, image acquisition, and post-acquisition analyses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  Google Scholar 

  2. Ripoche MA, Kress C, Poirier F, Dandolo L (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11:1596–1604

    Article  CAS  Google Scholar 

  3. Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ et al (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38:758–769

    Article  CAS  Google Scholar 

  4. Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ, Lee JT (2011) Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 7:e1002248

    Article  CAS  Google Scholar 

  5. Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39

    Article  CAS  Google Scholar 

  6. Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123

    Article  CAS  Google Scholar 

  7. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. elife 2:e01749

    Article  Google Scholar 

  8. Ballarino M, Cipriano A, Tita R, Santini T, Desideri F, Morlando M, Colantoni A, Carrieri C, Nicoletti C, Musarò A et al (2018) Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice. EMBO J 37(18):pii: e99697

    Article  Google Scholar 

  9. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  Google Scholar 

  10. Ulitsky I, Bartel DP (2013) LincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  Google Scholar 

  11. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  Google Scholar 

  12. Li J, Tian H, Yang J, Gong Z (2016) Long noncoding RNAs regulate cell growth, proliferation, and apoptosis. DNA Cell Biol 35:459–470

    Article  CAS  Google Scholar 

  13. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  Google Scholar 

  14. Ballarino M, Morlando M, Fatica A, Bozzoni I (2016) Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 126:2021–2030

    Article  Google Scholar 

  15. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  Google Scholar 

  16. Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20

    Article  Google Scholar 

  17. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  CAS  Google Scholar 

  18. Sun Q, Hao Q, Prasanth KV (2018) Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34:142–157

    Article  CAS  Google Scholar 

  19. Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M (2018) Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA 9:e1471

    Article  Google Scholar 

  20. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    Article  CAS  Google Scholar 

  21. Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280:585–590

    Article  CAS  Google Scholar 

  22. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879

    Article  CAS  Google Scholar 

  23. Itzkovitz S, Lyubimova A, Blat IC, Maynard M, van Es J, Lees J, Jacks T, Clevers H, van Oudenaarden A (2011) Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat Cell Biol 14:106–114

    Article  Google Scholar 

  24. Pena JT, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berninger P, Zavolan M, Tuschl T (2009) miRNA in situ hybridization in mammalian tissues fixed with formaldehyde and EDC. Nat Methods 6:139–141

    Article  CAS  Google Scholar 

  25. Cacchiarelli D, Martone J, Girardi E, Cesana M, Incitti T, Morlando M, Nicoletti C, Santini T, Sthandier O, Barberi L, Auricchio A, Musarò A, Bozzoni I (2010) MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metab 12:341–351

    Article  CAS  Google Scholar 

  26. Soares RJ, Maglieri G, Gutschner T, Diederichs S, Lund AH, Nielsen BS, Holmstrøm K (2018) Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res 46(1):e4

    Article  Google Scholar 

  27. Wood GS, Warnke R (1981) Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem 29:1196–1204

    Article  CAS  Google Scholar 

  28. Chaumeil J, Micsinai M, Skok JA (2013) Combined Immunofluorescence and DNA FISH on 3D-preserved interphase nuclei to study changes in 3D nuclear organization. J Vis Exp (72):e50087

    Google Scholar 

  29. Solovei I (2002) FISH on three-dimensionally preserved nuclei. In: Beatty B, Mai S, Squire J (eds) FISH: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  30. Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei I, Cremer T (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from Sapienza University (prot. RM11715C7C8176C1 and RM11916B7A39DCE5) and FFABR 2017 to M.B. Panel a of Fig. 4 was reprinted from Cell, 2011, 147(2), Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I., “A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA”, Pages 358-69, Copyright (2011), with permission from Elsevier. License number: 4398770836312. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Ballarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santini, T., Martone, J., Ballarino, M. (2021). Visualization of Nuclear and Cytoplasmic Long Noncoding RNAs at Single-Cell Level by RNA-FISH. In: Bodega, B., Lanzuolo, C. (eds) Capturing Chromosome Conformation. Methods in Molecular Biology, vol 2157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0664-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0664-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0663-6

  • Online ISBN: 978-1-0716-0664-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics