Skip to main content

Determining the ROS and the Antioxidant Status of Leaves During Cold Acclimation

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2156))

Abstract

Cold slows down Calvin cycle activity stronger than photosynthetic electron transport, which supports production of reactive oxygen species (ROS). Even under extreme temperature conditions, most ROS are detoxified by the combined action of low-molecular weight antioxidants and antioxidant enzymes. Subsequent regeneration of the low-molecular weight antioxidants by NAD(P)H and thioredoxin/thiol–dependent pathways relaxes the electron pressure in the photosynthetic electron transport chain. In general, the chloroplast antioxidant system protects plants from severe damage of enzymes, metabolites, and cellular structures by both ROS detoxification and antioxidant recycling. Various methods have been developed to quantify ROS and antioxidant levels in photosynthetic tissues. Here, we summarize a series of exceptionally fast and easily applicable methods that show local ROS accumulation and provide information on the overall availability of reducing sugars, mainly ascorbate, and of thiols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    CAS  Google Scholar 

  2. Hurry VM, Huner NPA (1991) Low growth temperature effects a differential inhibition of photosynthesis in spring and winter-wheat. Plant Physiol 96:491–497

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    CAS  Google Scholar 

  4. Mehler AH (1951) Studies on reactions of illuminated chloroplasts. 1. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    CAS  PubMed  Google Scholar 

  5. Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964

    CAS  PubMed  Google Scholar 

  6. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  7. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  8. Queval G, Issakidis-Bourguet E, Hoeberichts FA et al (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657

    CAS  PubMed  Google Scholar 

  9. Huner NPA, Oquist G, Hurry VM et al (1993) Photosynthesis, photoinhibition and low-temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    CAS  PubMed  Google Scholar 

  10. Juszczak I, Cvetkovic J, Zuther E et al (2016) Natural variation of cold deacclimation correlates with variation of cold-acclimation of the plastid antioxidant system in Arabidopsis thaliana accessions. Front Plant Sci 7:305

    PubMed  PubMed Central  Google Scholar 

  11. Kocsy G, von Ballmoos P, Ruegsegger A et al (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127:1147–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Davey MW, Bauw G, van Montagu M (1996) Analysis of ascorbate in plant tissues by high-performance capillary zone electrophoresis. Anal Biochem 239:8–19

    CAS  PubMed  Google Scholar 

  13. Foyer CH, Lelandais M, Edwards EA et al (1991) The role of ascorbate in plants, interactions with photosynthesis, and regulatory significance. In: Pell EJ, Steffen KL (eds) Active oxygen/oxidative stress and plant metabolism. ASPP, Rockville, MD, pp 131–144

    Google Scholar 

  14. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    CAS  PubMed  Google Scholar 

  15. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    CAS  PubMed  Google Scholar 

  16. Noctor G, Gomez L, Vanacker H et al (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    CAS  PubMed  Google Scholar 

  17. Noctor G, Arisi ACM, Jouanin L et al (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  18. Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans 24:472–478

    CAS  PubMed  Google Scholar 

  19. Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuther E, Juszczak I, Lee YP et al (2015) Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 5:12199

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    CAS  PubMed  Google Scholar 

  22. Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431

    CAS  Google Scholar 

  23. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 104:114–121

    Google Scholar 

  24. Asada K (1994) Molecular properties of ascorbate peroxidase - a hydrogen peroxide-scavenging enzyme in plants. In: Asada K, Yoshikawa T (eds) Frontiers of reactive oxygen species in biology and medicine. Elsevier Science B. V, Amsterdam, pp 103–106

    Google Scholar 

  25. Pitsch NT, Witsch B, Baier M (2010) Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana. BMC Plant Biol 10:133

    PubMed  PubMed Central  Google Scholar 

  26. Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascobic acid metabolism. Planta 133:21–25

    CAS  PubMed  Google Scholar 

  27. Huner NPA, Bode R, Dahal K et al (2013) Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany-Botanique 91:127–136

    CAS  Google Scholar 

  28. Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie, Medizin. BI-Wiss.-Verl, Mannheim, Wien, Zürich

    Google Scholar 

  30. Rouhier N (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    CAS  PubMed  Google Scholar 

  31. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  32. König J, Baier M, Horling F et al (2002) The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci U S A 99:5738–5743

    PubMed  PubMed Central  Google Scholar 

  33. Navrot N, Collin V, Gualberto J et al (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond Ser B Biol Sci 355:1419–1431

    CAS  Google Scholar 

  35. Spinola MC, Perez-Ruiz JM, Pulido P et al (2008) NTRC new ways of using NADPH in the chloroplast. Physiol Plant 133:516–524

    CAS  PubMed  Google Scholar 

  36. Anderson JW, Foyer CH, Walker DA (1983) Light dependent reduction of hydrogen peroxide by intact spinach chloroplasts. Biochim Biophys Acta 724:69–74

    CAS  Google Scholar 

  37. Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35:199–201

    CAS  PubMed  Google Scholar 

  38. Beck EH, Fettig S, Knake C et al (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    CAS  PubMed  Google Scholar 

  39. Horling F, Lamkemeyer P, Konig J et al (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shaikali J, Baier M (2010) Ascorbate regulation of 2-Cys peroxiredoxin-a promoter activity is light-dependent. J Plant Physiol 167:461–467

    Google Scholar 

  41. Heiber I, Cai W, Baier M (2014) Linking chloroplast antioxidant defense to carbohydrate availability: the transcript abundance of stromal ascorbate peroxidase is sugar-controlled via ascorbate biosynthesis. Mol Plant 7:58–70

    CAS  PubMed  Google Scholar 

  42. Kawai S, Takeshita S, Okazaki M et al (1994) Cloning and characterization of OSF-3, a new member of the MER5 family, expressed in mouse osteoblastic cells. J Biochem 115:641–643

    CAS  PubMed  Google Scholar 

  43. Choi WG, Swanson SJ, Gilroy S (2012) High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant J 70:118–128

    CAS  PubMed  Google Scholar 

  44. Exposito-Rodriguez M, Laissue PP, Littlejohn GR et al (2013) The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants. Methods Enzymol 527:185–201

    CAS  PubMed  Google Scholar 

  45. Deshwal S, Antonucci S, Kaludercic N et al (2018) Measurement of mitochondrial ROS formation. Mitochondrial bioenergetics: methods and protocols. Methods Mol Biol 1782:403–418

    CAS  PubMed  Google Scholar 

  46. Hideg E, Schreiber U (2007) Parallel assessment of ROS formation and photosynthesis in leaves by fluorescence imaging. Photosynth Res 92:103–108

    CAS  PubMed  Google Scholar 

  47. van der Jagt DJ, Garry PJ, Hunt WC (1986) Ascorbate in plasma as measured by liquid chromatography and by dichlorophenolindophenol colorimetry. Clin Chem 32:1004–1006

    Google Scholar 

  48. Sheffield JB (2007) ImageJ, a useful tool for biological image processing and analysis. Microsc Microanal 13:200–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarete Baier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bittner, A., Griebel, T., van Buer, J., Juszczak-Debosz, I., Baier, M. (2020). Determining the ROS and the Antioxidant Status of Leaves During Cold Acclimation. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 2156. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0660-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0660-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0659-9

  • Online ISBN: 978-1-0716-0660-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics