Skip to main content

In Vivo Binding of Recombination Proteins to Non-DSB DNA Lesions and to Replication Forks

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Homologous recombination (HR) has been extensively studied in response to DNA double-strand breaks (DSBs). In contrast, much less is known about how HR deals with DNA lesions other than DSBs (e.g., at single-stranded DNA) and replication forks, despite the fact that these DNA structures are associated with most spontaneous recombination events. A major handicap for studying the role of HR at non-DSB DNA lesions and replication forks is the difficulty of discriminating whether a recombination protein is associated with the non-DSB lesion per se or rather with a DSB generated during their processing. Here, we describe a method to follow the in vivo binding of recombination proteins to non-DSB DNA lesions and replication forks. This approach is based on the cleavage and subsequent electrophoretic analysis of the target DNA by the recombination protein fused to the micrococcal nuclease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sugawara N, Wang X, Haber JE (2003) In Vivo Roles of Rad52, Rad54, and Rad55 Proteins in Rad51-Mediated Recombination. Mol Cell 12:209–219. https://doi.org/10.1016/S1097-2765(03)00269-7

    Article  CAS  PubMed  Google Scholar 

  2. Wolner B, van Komen S, Sung P, Peterson CL (2003) Recruitment of the Recombinational Repair Machinery to a DNA Double-Strand Break in Yeast. Mol Cell 12:221–232. https://doi.org/10.1016/S1097-2765(03)00242-9

    Article  CAS  PubMed  Google Scholar 

  3. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA Damage Response. Cell 118:699–713. https://doi.org/10.1016/j.cell.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  4. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. https://doi.org/10.1146/annurev-genet-051710-150955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fabre F, Chan A, Heyer W-D, Gangloff S (2002) Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci U S A 99:16887–16892. https://doi.org/10.1073/pnas.252652399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lettier G, Feng Q, de Mayolo AA et al (2006) The Role of DNA Double-Strand Breaks in Spontaneous Homologous Recombination in S. cerevisiae. PLoS Genet 2:e194. https://doi.org/10.1371/journal.pgen.0020194.st001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prado F (2018) Homologous Recombination: To Fork and Beyond. Genes (Basel) 9:603. https://doi.org/10.3390/genes9120603

    Article  CAS  Google Scholar 

  8. González-Prieto R, Muñoz-Cabello AM, Cabello-Lobato MJ, Prado F (2013) Rad51 replication fork recruitment is required for DNA damage tolerance. EMBO J 32:1307–1321. https://doi.org/10.1038/emboj.2013.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Litwin I, Bakowski T, Szakal B et al (2018, 2018) Error-free DNA damage tolerance pathway is facilitated by the Irc5 translocase through cohesin. EMBO J:e98732-18. https://doi.org/10.15252/embj.201798732

  10. Hung S-H, Wong RP, Ulrich HD, Kao C-F (2017) Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proc Natl Acad Sci U S A 114:E2205–E2214. https://doi.org/10.1073/pnas.1612633114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmid M, Durussel T, Laemmli UK (2004) ChIC and ChEC. Mol Cell 16:147–157. https://doi.org/10.1016/j.molcel.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Friedman KL, Brewer BJ (1995) Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 262:613–627

    Article  CAS  Google Scholar 

  13. Clemente-Ruiz M, Prado F (2009) Chromatin assembly controls replication fork stability. EMBO Rep 10:790–796. https://doi.org/10.1038/embor.2009.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naumov GI, Naumova ES, Lantto RA et al (1992) Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: electrophoretic karyotypes. Yeast 8:599–612. https://doi.org/10.1002/yea.320080804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants BFU2012-38171 and BFU2015-63698-P from the Spanish government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

González-Prieto, R., Cabello-Lobato, M.J., Prado, F. (2021). In Vivo Binding of Recombination Proteins to Non-DSB DNA Lesions and to Replication Forks. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics