Skip to main content

Interhomolog Homologous Recombination in Mouse Embryonic Stem Cells

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Homologous recombination is a critical mechanism for the repair of DNA double-strand breaks (DSBs). It occurs predominantly between identical sister chromatids and at lower frequency can also occur between homologs. Interhomolog homologous recombination (IH-HR) has the potential lead to substantial loss of genetic information, i.e., loss of heterozygosity (LOH), when it is accompanied by crossing over. In this chapter, we describe a system to study IH-HR induced by a defined DSB in mouse embryonic stem cells derived from F1 hybrid mice. This system is based on the placement of mutant selectable marker genes, one of which contains an I-SceI endonuclease cleavage site, on the two homologs such that repair of the I-SceI-generated DSB from the homolog leads to drug resistance. Loss of heterozygosity arising during IH-HR is analyzed using a PCR-based approach. Finally, we present a strategy to analyze the role of BLM helicase in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  Google Scholar 

  2. Stark JM, Jasin M (2003) Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Mol Cell Biol 23:733–743

    Article  CAS  Google Scholar 

  3. Cole F, Keeney S, Jasin M (2010) Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev 24:1201–1207

    Article  CAS  Google Scholar 

  4. Hagstrom SA, Dryja TP (1999) Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas. Proc Natl Acad Sci U S A 96:2952–2957

    Article  CAS  Google Scholar 

  5. You Y, Bergstrom R, Klemm M et al (1997) Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat Genet 15:285–288

    Article  CAS  Google Scholar 

  6. Yusa K, Horie K, Kondoh G et al (2004) Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom’s syndrome gene. Nature 429:896–899

    Article  CAS  Google Scholar 

  7. LaRocque JR, Stark JM, Oh J et al (2011) Interhomolog recombination and loss of heterozygosity in wild-type and bloom syndrome helicase (BLM)-deficient mammalian cells. Proc Natl Acad Sci U S A 108:11971–11976

    Article  CAS  Google Scholar 

  8. Moynahan ME, Jasin M (1997) Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci U S A 94:8988–8993

    Article  CAS  Google Scholar 

  9. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407

    Article  CAS  Google Scholar 

  10. Neuwirth EA, Honma M, Grosovsky AJ (2007) Interchromosomal crossover in human cells is associated with long gene conversion tracts. Mol Cell Biol 27:5261–5274

    Article  CAS  Google Scholar 

  11. German J, Schonberg S, Louie E et al (1977) Bloom’s syndrome. IV. Sister-chromatid exchanges in lymphocytes. Am J Hum Genet 29:248–255

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo G, Santoro IM, McDaniel LD et al (2000) Cancer predisposition caused by elevated mitotic recombination in bloom mice. Nat Genet 26:424–429

    Article  CAS  Google Scholar 

  13. Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874

    Article  CAS  Google Scholar 

  14. te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A 89:5128–5132

    Article  Google Scholar 

  15. Araki K, Araki M, Miyazaki J et al (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci U S A 92:160–164

    Article  CAS  Google Scholar 

  16. Davies AA, Masson JY, McIlwraith MJ et al (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7:273–282

    Article  CAS  Google Scholar 

  17. Saeki H, Siaud N, Christ N et al (2006) Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions. Proc Natl Acad Sci U S A 103:8768–8773

    Article  CAS  Google Scholar 

  18. Larocque JR, Jasin M (2010) Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Mol Cell Biol 30:1887–1897

    Article  CAS  Google Scholar 

  19. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jeremy Stark for helpful input. This work was supported by MSK Cancer Center Support Grant/Core Grant (NIH P30CA008748), NIH F32GM110978 (R.P.), American Cancer Society-New York Cancer Research Fund PF-17-136-01-DMC (T.W.), and grants to M.J. from the MSK Functional Genomics Initiative and NIH (R35GM118175, R01CA185660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vanoli, F., Prakash, R., White, T., Jasin, M. (2021). Interhomolog Homologous Recombination in Mouse Embryonic Stem Cells. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics