Skip to main content

From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease

  • Protocol
  • First Online:
Cerebral Cavernous Malformations (CCM)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2152))

Abstract

Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains. Biochemical, molecular, and cellular studies then showed that these proteins are involved in endothelial cell-cell junction and blood–brain barrier stability maintenance through the regulation of major cellular structures and mechanisms, including endothelial cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, autophagy, and endothelial-to-mesenchymal transition, suggesting that they act as pleiotropic regulators of cellular homeostasis, and opening novel therapeutic perspectives. Indeed, accumulated evidence in cellular and animal models has eventually revealed that the emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses.

In this introductory review, we present a general overview of 20 years of amazing progress in the identification of genetic culprits and molecular mechanisms underlying CCM disease pathogenesis, and the development of targeted therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigamonti D (2011) Cavernous malformations of the nervous system. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  2. Fontanella M (2015) Cerebral cavernous malformations (CCM). Minerva Medica, Torino, Italy

    Google Scholar 

  3. Flemming KD (2017) Clinical management of cavernous malformations. Curr Cardiol Rep 19:122

    Article  PubMed  Google Scholar 

  4. Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC (2001) Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet 10:2953–2960

    Article  CAS  PubMed  Google Scholar 

  5. Tanriover G, Sozen B, Seker A, Kilic T, Gunel M, Demir N (2013) Ultrastructural analysis of vascular features in cerebral cavernous malformations. Clin Neurol Neurosurg 115:438–444

    Article  PubMed  Google Scholar 

  6. de Souza JM, Domingues RC, Cruz LC, Domingues FS, Iasbeck T, Gasparetto EL (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29:154–158

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cooper AD, Campeau NG, Meissner I (2008) Susceptibility-weighted imaging in familial cerebral cavernous malformations. Neurology 71:382

    Article  PubMed  Google Scholar 

  8. Campbell PG, Jabbour P, Yadla S, Awad IA (2010) Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus 29:E6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moore SA, Brown RD, Christianson TJ, Flemming KD (2014) Long-term natural history of incidentally discovered cavernous malformations in a single-center cohort. J Neurosurg 120:1188–1192

    Article  PubMed  Google Scholar 

  10. Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D (2009) Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol 5:659–670

    Article  PubMed  Google Scholar 

  11. Trapani E, Retta SF (2015) Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors. J Neurosurg Sci 59:201–209

    CAS  PubMed  Google Scholar 

  12. Retta SF, Glading AJ (2016) Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 81:254–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cavalcanti DD, Kalani MY, Martirosyan NL, Eales J, Spetzler RF, Preul MC (2012) Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 116:122–132

    Article  CAS  PubMed  Google Scholar 

  14. Choquet H, Pawlikowska L, Lawton MT, Kim H (2015) Genetics of cerebral cavernous malformations: current status and future prospects. J Neurosurg Sci 59:211–220

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, Mabray MC, Vigil C, Tang AT, Kahn ML, Yonas H, Lawton MT, Kim H, Morrison L (2019) Familial cerebral cavernous malformations. Stroke 50:1294–1301

    Article  PubMed  PubMed Central  Google Scholar 

  16. Petersen TA, Morrison LA, Schrader RM, Hart BL (2010) Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol 31:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng G, Bai C, Yu T, Wu Z, Liu X, Zhang J, Zhao J (2014) The association between cerebral developmental venous anomaly and concomitant cavernous malformation: an observational study using magnetic resonance imaging. BMC Neurol 14:50

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brinjikji W, El-Masri AE, Wald JT, Flemming KD, Lanzino G (2017) Prevalence of cerebral cavernous malformations associated with developmental venous anomalies increases with age. Childs Nerv Syst 33:1539–1543

    Article  PubMed  Google Scholar 

  19. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, Girard R, Zeineddine HA, Lightle R, Moore T, Cao Y, Shenkar R, Chen M, Mericko P, Yang J, Li L, Tanes C, Kobuley D, Võsa U, Whitehead KJ, Li DY, Franke L, Hart B, Schwaninger M, Henao-Mejia J, Morrison L, Kim H, Awad IA, Zheng X, Kahn ML (2017) Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fontanella MM, Panciani PP, Spena G, Roca E, Migliorati K, Ambrosi C, Sturiale CL, Retta SF (2015) Professional athletes and cerebral cavernomas: an obstacle to overcome. J Sports Med Phys Fitness 55:1046–1047

    CAS  PubMed  Google Scholar 

  21. Fontanella M, Bacigaluppi S (2015) Treatment of cerebral cavernous malformations: where do we stand? J Neurosurg Sci 59:199–200

    CAS  PubMed  Google Scholar 

  22. Awad IA, Polster SP (2019) Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 131:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mabray MC, Caprihan A, Nelson J, McCulloch CE, Zafar A, Kim H, Hart BL, Morrison L (2019) Effect of simvastatin on permeability in cerebral cavernous malformation type 1 patients: results from a pilot small randomized controlled clinical trial. Transl Stroke Res

    Google Scholar 

  24. Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, Touchman JW, Gallione CJ, Lee-Lin SQ, Kosofsky B, Kurth JH, Louis DN, Mettler G, Morrison L, Gil-Nagel A, Rich SS, Zabramski JM, Boguski MS, Green ED, Marchuk DA (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8:2325–2333

    Article  CAS  PubMed  Google Scholar 

  25. Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193

    Article  CAS  PubMed  Google Scholar 

  26. Serebriiskii I, Estojak J, Sonoda G, Testa JR, Golemis EA (1997) Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Oncogene 15:1043–1049

    Article  CAS  PubMed  Google Scholar 

  27. Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, Small JV, Retta SF (2005) E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 118:4765–4783

    Article  CAS  PubMed  Google Scholar 

  28. Retta SF, Balzac F, Avolio M (2006) Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 85:283–293

    Article  CAS  PubMed  Google Scholar 

  29. Goitre L, Cutano V, Retta SF (2014) Fluorescence microscopy study of Rap1 subcellular localization. Methods Mol Biol 1120:197–205

    Article  CAS  PubMed  Google Scholar 

  30. Goitre L, Retta SF (2014) Combined pulldown and time-lapse microscopy studies for determining the role of Rap1 in the crosstalk between integrins and cadherins. Methods Mol Biol 1120:177–195

    Article  CAS  PubMed  Google Scholar 

  31. Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, Plummer NW, Cannella M, Maglione V, Squitieri F, Johnson EW, Rouleau GA, Ptacek L, Marchuk DA (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73:1459–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid AL, Comoy J, Frerebeau P, Gilbert B, Houtteville JP, Jan M, Lapierre F, Loiseau H, Menei P, Mercier P, Moreau JJ, Nivelon-Chevallier A, Parker F, Redondo AM, Scarabin JM, Tremoulet M, Zerah M, Maciazek J, Tournier-Lasserve E, S. F. d. Neurochirurgie (2004) Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74:326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E, S. F. d. Neurochirurgie (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76:42–51

    Article  CAS  PubMed  Google Scholar 

  34. Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E, S. F. d. Neurochirurgie (2006) Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60:550–556

    Article  PubMed  Google Scholar 

  35. D’Angelo R, Marini V, Rinaldi C, Origone P, Dorcaratto A, Avolio M, Goitre L, Forni M, Capra V, Alafaci C, Mareni C, Garrè C, Bramanti P, Sidoti A, Retta SF, Amato A (2011) Mutation analysis of CCM1, CCM2 and CCM3 genes in a cohort of Italian patients with cerebral cavernous malformation. Brain Pathol 21:215–224

    Article  PubMed  CAS  Google Scholar 

  36. Spiegler S, Rath M, Paperlein C, Felbor U (2018) Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses, and genetic counselling. Mol Syndromol 9:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277:1070–1075

    Article  CAS  PubMed  Google Scholar 

  38. Choquet H, Nelson J, Pawlikowska L, McCulloch CE, Akers A, Baca B, Khan Y, Hart B, Morrison L, Kim H (2014) Association of cardiovascular risk factors with disease severity in cerebral cavernous malformation type 1 subjects with the common Hispanic mutation. Cerebrovasc Dis 37:57–63

    Article  PubMed  Google Scholar 

  39. Choquet H, Pawlikowska L, Nelson J, McCulloch CE, Akers A, Baca B, Khan Y, Hart B, Morrison L, Kim H, B. V. M. C. B. Study (2014) Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis 38:433–440

    Article  CAS  PubMed  Google Scholar 

  40. Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF (2016) Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in cerebral cavernous malformation type 1. Free Radic Biol Med 92:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Francalanci F, Avolio M, De Luca E, Longo D, Menchise V, Guazzi P, Sgrò F, Marino M, Goitre L, Balzac F, Trabalzini L, Retta SF (2009) Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. Exp Cell Res 315:285–303

    Article  CAS  PubMed  Google Scholar 

  42. Gingras AR, Liu JJ, Ginsberg MH (2012) Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J Cell Biol 199:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ (2012) Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1). J Biol Chem 287:22317–22327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Retta SF, Avolio M, Francalanci F, Procida S, Balzac F, Degani S, Tarone G, Silengo L (2004) Identification of Krit1B: a novel alternative splicing isoform of cerebral cavernous malformation gene-1. Gene 325:63–78

    Article  CAS  PubMed  Google Scholar 

  45. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127:701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher OS, Boggon TJ (2014) Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 71:1881–1892

    Article  CAS  PubMed  Google Scholar 

  47. Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA (2015) CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation. J Cell Biol 208:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fisher OS, Deng H, Liu D, Zhang Y, Wei R, Deng Y, Zhang F, Louvi A, Turk BE, Boggon TJ, Su B (2015) Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun 6:7937

    Article  CAS  PubMed  Google Scholar 

  49. Fidalgo M, Fraile M, Pires A, Force T, Pombo C, Zalvide J (2010) CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation. J Cell Sci 123:1274–1284

    Article  CAS  PubMed  Google Scholar 

  50. Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362:121–131

    Article  CAS  PubMed  Google Scholar 

  51. Zalvide J, Fidalgo M, Fraile M, Guerrero A, Iglesias C, Floridia E, Pombo CM (2013) The CCM3-GCKIII partnership. Histol Histopathol 28:1265–1272

    CAS  PubMed  Google Scholar 

  52. Zhang M, Dong L, Shi Z, Jiao S, Zhang Z, Zhang W, Liu G, Chen C, Feng M, Hao Q, Wang W, Yin M, Zhao Y, Zhang L, Zhou Z (2013) Structural mechanism of CCM3 heterodimerization with GCKIII kinases. Structure 21:680–688

    Article  CAS  PubMed  Google Scholar 

  53. Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U (2007) CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8:249–256

    Article  CAS  PubMed  Google Scholar 

  54. Lant B, Yu B, Goudreault M, Holmyard D, Knight JD, Xu P, Zhao L, Chin K, Wallace E, Zhen M, Gingras AC, Derry WB (2015) CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 6:6449

    Article  CAS  PubMed  Google Scholar 

  55. Pal S, Lant B, Yu B, Tian R, Tong J, Krieger JR, Moran MF, Gingras AC, Derry WB (2017) CCM-3 promotes C. elegans germline development by regulating vesicle trafficking cytokinesis and polarity. Curr Biol 27:868–876

    Article  CAS  PubMed  Google Scholar 

  56. Goudreault M, D’Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8:157–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goitre L, Balzac F, Degani S, Degan P, Marchi S, Pinton P, Retta SF (2010) KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One 5:e11786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Guazzi P, Goitre L, Ferro E, Cutano V, Martino C, Trabalzini L, Retta SF (2012) Identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1. PLoS One 7:e44705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goitre L, De Luca E, Braggion S, Trapani E, Guglielmotto M, Biasi F, Forni M, Moglia A, Trabalzini L, Retta SF (2014) KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 68:134–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, Ferroni L, Patergnani S, Missiroli S, Goitre L, Trabalzini L, Rimessi A, Giorgi C, Zavan B, Cassoni P, Dejana E, Retta SF, Pinton P (2015) Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 7:1403–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131:289–299

    Article  CAS  PubMed  Google Scholar 

  62. Moglia A, Goitre L, Gianoglio S, Baldini E, Trapani E, Genre A, Scattina A, Dondo G, Trabalzini L, Beekwilder J, Retta SF (2015) Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. Biofactors 41:15–27

    Article  CAS  PubMed  Google Scholar 

  63. Moglianetti M, De Luca E, Pedone D, Marotta R, Catelani T, Sartori B, Amenitsch H, Retta SF, Pompa PP (2016) Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 8:3739–3752

    Article  CAS  PubMed  Google Scholar 

  64. Goitre L, DiStefano PV, Moglia A, Nobiletti N, Baldini E, Trabalzini L, Keubel J, Trapani E, Shuvaev VV, Muzykantov VR, Sarelius IH, Retta SF, Glading AJ (2017) Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 7:8296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lopez-Ramirez MA, Fonseca G, Zeineddine HA, Girard R, Moore T, Pham A, Cao Y, Shenkar R, de Kreuk BJ, Lagarrigue F, Lawler J, Glass CK, Awad IA, Ginsberg MH (2017) Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med 214:3331–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Luca E, Pedone D, Moglianetti M, Pulcini D, Perrelli A, Retta SF, Pompa PP (2018) Multifunctional platinum@BSA-rapamycin nanocarriers for the combinatorial therapy of cerebral cavernous malformation. ACS Omega 3:15389–15398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Antognelli C, Trapani E, Delle Monache S, Perrelli A, Daga M, Pizzimenti S, Barrera G, Cassoni P, Angelucci A, Trabalzini L, Talesa VN, Goitre L, Retta SF (2018) KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for cerebral cavernous malformation disease. Free Radic Biol Med 115:202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Antognelli C, Trapani E, Delle Monache S, Perrelli A, Fornelli C, Retta F, Cassoni P, Talesa VN, Retta SF (2018) Data in support of sustained upregulation of adaptive redox homeostasis mechanisms caused by KRIT1 loss-of-function. Data Brief 16:929–938

    Article  PubMed  Google Scholar 

  69. Cianfruglia L, Perrelli A, Fornelli C, Magini A, Gorbi S, Salzano AM, Antognelli C, Retta F, Benedetti V, Cassoni P, Emiliani C, Principato G, Scaloni A, Armeni T, Retta SF (2019) KRIT1 loss-of-function associated with cerebral cavernous malformation disease leads to enhanced. Antioxidants (Basel) 8:E27

    Article  CAS  Google Scholar 

  70. Vieceli Dalla Sega F, Mastrocola R, Aquila G, Fortini F, Fornelli C, Zotta A, Cento AS, Perrelli A, Boda E, Pannuti A, Marchi S, Pinton P, Ferrari R, Rizzo P, Retta SF (2019) KRIT1 deficiency promotes aortic endothelial dysfunction. Int J Mol Sci 20

    Google Scholar 

  71. Chan AC, Li DY, Berg MJ, Whitehead KJ (2010) Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype. FEBS J 277:1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY (2004) Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131:1437–1448

    Article  CAS  PubMed  Google Scholar 

  73. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boulday G, Blécon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovannini M, Tournier-Lasserve E (2009) Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2:168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Sig 3:ra26

    Google Scholar 

  76. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498:492–496

    Article  CAS  PubMed  Google Scholar 

  77. Choi JP, Yang X, Foley M, Wang X, Zheng X (2017) Induction and micro-CT imaging of cerebral cavernous malformations in mouse model. J Vis Exp

    Google Scholar 

  78. Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, Pack MA, Sessa WC, Kahn ML (2010) CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120:2795–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Renz M, Otten C, Faurobert E, Rudolph F, Zhu Y, Boulday G, Duchene J, Mickoleit M, Dietrich AC, Ramspacher C, Steed E, Manet-Dupé S, Benz A, Hassel D, Vermot J, Huisken J, Tournier-Lasserve E, Felbor U, Sure U, Albiges-Rizo C, Abdelilah-Seyfried S (2015) Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev Cell 32:181–190

    Article  CAS  PubMed  Google Scholar 

  80. Otten C, Knox J, Boulday G, Eymery M, Haniszewski M, Neuenschwander M, Radetzki S, Vogt I, Hähn K, De Luca C, Cardoso C, Hamad S, Igual Gil C, Roy P, Albiges-Rizo C, Faurobert E, von Kries JP, Campillos M, Tournier-Lasserve E, Derry WB, Abdelilah-Seyfried S (2018) Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Mol Med 10:e9155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ito S, Greiss S, Gartner A, Derry WB (2010) Cell-nonautonomous regulation of C. elegans germ cell death by kri-1. Curr Biol 20:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M, Go C, Dogra D, Koskimäki J, Girard R, Li Y, Fraser AG, Awad IA, Abdelilah-Seyfried S, Gingras AC, Derry WB (2019) A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 10:1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Song Y, Eng M, Ghabrial AS (2013) Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. Dev Cell 25:507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36:872–874

    Article  PubMed  Google Scholar 

  85. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18:919–930

    Article  CAS  PubMed  Google Scholar 

  86. Pagenstecher A, Stahl S, Sure U, Felbor U (2009) A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 18:911–918

    Article  CAS  PubMed  Google Scholar 

  87. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20:211–222

    Article  CAS  PubMed  Google Scholar 

  88. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, De Castro N, Berg MJ, Corcoran DL, Awad IA, Marchuk DA (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23:4357–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Detter MR, Snellings DA, Marchuk DA (2018) Cerebral cavernous malformations develop through clonal expansion of mutant endothelial cells. Circ Res 123:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rath M, Pagenstecher A, Hoischen A, Felbor U (2020) Postzygotic mosaicism in cerebral cavernous malformation. J Med Genet 57(3):212–216

    Article  PubMed  Google Scholar 

  91. Malinverno M, Maderna C, Abu Taha A, Corada M, Orsenigo F, Valentino M, Pisati F, Fusco C, Graziano P, Giannotta M, Yu QC, Zeng YA, Lampugnani MG, Magnusson PU, Dejana E (2019) Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun 10:2761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Boulday G, Rudini N, Maddaluno L, Blécon A, Arnould M, Gaudric A, Chapon F, Adams RH, Dejana E, Tournier-Lasserve E (2011) Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med 208:1835–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chan AC, Drakos SG, Ruiz OE, Smith AC, Gibson CC, Ling J, Passi SF, Stratman AN, Sacharidou A, Revelo MP, Grossmann AH, Diakos NA, Davis GE, Metzstein MM, Whitehead KJ, Li DY (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Louvi A, Chen L, Two AM, Zhang H, Min W, Günel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci U S A 108:3737–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bacigaluppi S, Retta SF, Pileggi S, Fontanella M, Goitre L, Tassi L, La Camera A, Citterio A, Patrosso MC, Tredici G, Penco S (2013) Genetic and cellular basis of cerebral cavernous malformations: implications for clinical management. Clin Genet 83:7–14

    Article  CAS  PubMed  Google Scholar 

  97. Marchi S, Trapani E, Corricelli M, Goitre L, Pinton P, Retta SF (2016) Beyond multiple mechanisms and a unique drug: defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Dis 4:e1142640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Glading A, Han J, Stockton RA, Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Glading AJ, Ginsberg MH (2010) Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signaling. Dis Model Mech 3:73–83

    Article  CAS  PubMed  Google Scholar 

  100. Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49:719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C (2013) CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202:545–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Macek Jilkova Z, Lisowska J, Manet S, Verdier C, Deplano V, Geindreau C, Faurobert E, Albigès-Rizo C, Duperray A (2014) CCM proteins control endothelial β1 integrin dependent response to shear stress. Biol Open 3:1228–1235

    Article  PubMed  PubMed Central  Google Scholar 

  103. Crose LE, Hilder TL, Sciaky N, Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284:13301–13305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285:11760–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207:881–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Richardson BT, Dibble CF, Borikova AL, Johnson GL (2013) Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biol Chem 394:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wüstehube J, Bartol A, Liebler SS, Brütsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A (2010) Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 107:12640–12645

    Article  PubMed  PubMed Central  Google Scholar 

  108. You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U, Zhu Y (2013) Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schulz GB, Wieland E, Wüstehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A (2015) Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes. Stroke 46:1337–1343

    Article  CAS  PubMed  Google Scholar 

  110. Kar S, Baisantry A, Nabavi A, Bertalanffy H (2016) Role of delta-notch signaling in cerebral cavernous malformations. Neurosurg Rev 39:581–589

    Article  PubMed  Google Scholar 

  111. You C, Zhao K, Dammann P, Keyvani K, Kreitschmann-Andermahr I, Sure U, Zhu Y (2017) EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation. J Cell Mol Med 21:1848–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ (2014) KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling. J Biol Chem 289:33054–33065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kar S, Samii A, Bertalanffy H (2015) PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 38:229–236; discussion 236–227

    Article  PubMed  Google Scholar 

  114. Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN (2015) The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 112:14284–14289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou Z, Rawnsley DR, Goddard LM, Pan W, Cao XJ, Jakus Z, Zheng H, Yang J, Arthur JS, Whitehead KJ, Li D, Zhou B, Garcia BA, Zheng X, Kahn ML (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Choi JP, Foley M, Zhou Z, Wong WY, Gokoolparsadh N, Arthur JS, Li DY, Zheng X (2016) Micro-CT imaging reveals Mekk3 heterozygosity prevents cerebral cavernous malformations in Ccm2-deficient mice. PLoS One 11:e0160833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W (2016) Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 22:1033–1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E (2016) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8:6–24

    Article  CAS  PubMed  Google Scholar 

  119. Orso F, Balzac F, Marino M, Lembo A, Retta SF, Taverna D (2013) miR-21 coordinates tumor growth and modulates KRIT1 levels. Biochem Biophys Res Commun 438:90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kar S, Bali KK, Baisantry A, Geffers R, Samii A, Bertalanffy H (2017) Genome-wide sequencing reveals microRNAs downregulated in cerebral cavernous malformations. J Mol Neurosci 61:178–188

    Article  CAS  PubMed  Google Scholar 

  121. Antognelli C, Perrelli A, Armeni T, Talesa VN, Retta SF, (2020) Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants 9 (2):124

    Google Scholar 

  122. Finetti F, Schiavo I, Ercoli J, Zotta A, Boda E, Retta SF, Trabalzini L, (2020) KRIT1 loss-mediated upregulation of NOX1 in stromal cells promotes paracrine pro-angiogenic responses. Cellular Signalling 68:109527

    Google Scholar 

  123. Marchi S, Retta SF, Pinton P (2016) Cellular processes underlying cerebral cavernous malformations: autophagy as another point of view. Autophagy 12:424–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Corr M, Lerman I, Keubel JM, Ronacher L, Misra R, Lund F, Sarelius IH, Glading AJ (2012) Decreased Krev interaction-trapped 1 expression leads to increased vascular permeability and modifies inflammatory responses in vivo. Arterioscler Thromb Vasc Biol 32:2702–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fidalgo M, Guerrero A, Fraile M, Iglesias C, Pombo CM, Zalvide J (2012) Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress. J Biol Chem 287:11556–11565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goitre L, Pergolizzi B, Ferro E, Trabalzini L, Retta SF (2012) Molecular crosstalk between integrins and cadherins: do reactive oxygen species set the talk? J Sig Transduct 2012:807682

    Google Scholar 

  127. Ferro E, Goitre L, Baldini E, Retta SF, Trabalzini L (2014) Ras GTPases are both regulators and effectors of redox agents. Methods Mol Biol 1120:55–74

    Article  CAS  PubMed  Google Scholar 

  128. Castro M, Laviña B, Ando K, Álvarez-Aznar A, Abu Taha A, Brakebusch C, Dejana E, Betsholtz C, Gaengel K (2019) CDC42 Deletion Elicits Cerebral Vascular Malformations via Increased MEKK3-Dependent KLF4 Expression. Circulation Research 124(8):1240–1252

    Google Scholar 

  129. Aaron Hobbs G, Zhou B, Cox AD, Campbell SL (2014) Rho GTPases, oxidation, and cell redox control. Small GTPases 5(2):e28579

    Google Scholar 

  130. Li DY, Whitehead KJ (2010) Evaluating strategies for the treatment of cerebral cavernous malformations. Stroke 41:S92–S94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nishimura S, Mishra-Gorur K, Park J, Surovtseva YV, Sebti SM, Levchenko A, Louvi A, Gunel M (2017) Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A 114:5503–5508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shenkar R, Peiper A, Pardo H, Moore T, Lightle R, Girard R, Hobson N, Polster SP, Koskimäki J, Zhang D, Lyne SB, Cao Y, Chaudagar K, Saadat L, Gallione C, Pytel P, Liao JK, Marchuk D, Awad IA (2019) Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive Pdcd10/Ccm3 disease. Stroke 50:738–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH, Marchuk DA, Awad IA (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43:571–574

    Article  CAS  PubMed  Google Scholar 

  134. Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y, Zhang L, Wu M, Zeineddine HA, Girard R, McDonald DA, Rorrer A, Gallione C, Pytel P, Liao JK, Marchuk DA, Awad IA (2017) RhoA kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48:187–194

    Article  CAS  PubMed  Google Scholar 

  135. McKerracher L, Shenkar R, Abbinanti M, Cao Y, Peiper A, Liao JK, Lightle R, Moore T, Hobson N, Gallione C, Ruschel J, Koskimäki J, Girard R, Rosen K, Marchuk DA, Awad IA (2019) A brain-targeted orally available ROCK2 inhibitor benefits mild and aggressive cavernous angioma disease. Transl Stroke Res

    Google Scholar 

  136. Bravi L, Rudini N, Cuttano R, Giampietro C, Maddaluno L, Ferrarini L, Adams RH, Corada M, Boulday G, Tournier-Lasserve E, Dejana E, Lampugnani MG (2015) Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci U S A 112:8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Choi JP, Wang R, Yang X, Wang X, Wang L, Ting KK, Foley M, Cogger V, Yang Z, Liu F, Han Z, Liu R, Baell J, Zheng X (2018) Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. Sci Adv 4:eaau0731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shi C, Shenkar R, Zeineddine HA, Girard R, Fam MD, Austin C, Moore T, Lightle R, Zhang L, Wu M, Cao Y, Gunel M, Louvi A, Rorrer A, Gallione C, Marchuk DA, Awad IA (2016) B-cell depletion reduces the maturation of cerebral cavernous malformations in murine models. J Neuroimmune Pharmacol 11:369–377

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lopez-Ramirez MA, Pham A, Girard R, Wyseure T, Hale P, Yamashita A, Koskimäki J, Polster S, Saadat L, Romero IA, Esmon CT, Lagarrigue F, Awad IA, Mosnier LO, Ginsberg MH (2019) Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood 133:193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Moschovi M, Alexiou GA, Stefanaki K, Tourkantoni N, Prodromou N (2010) Propranolol treatment for a giant infantile brain cavernoma. J Child Neurol 25:653–655

    Article  PubMed  Google Scholar 

  141. Filippidis AS, Fountas KN, Kalani MY, Zabramski JM, Spetzler RF (2011) Letter by Filippidis et al regarding article, “Evaluating strategies for the treatment of cerebral cavernous malformations”. Stroke 42:e373

    Article  PubMed  Google Scholar 

  142. Berti I, Marchetti F, Skabar A, Zennaro F, Zanon D, Ventura A (2014) Propranolol for cerebral cavernous angiomatosis: a magic bullet. Clin Pediatr (Phila) 53:189–190

    Article  Google Scholar 

  143. Zabramski JM, Kalani MYS, Filippidis AS, Spetzler RF (2016) Propranolol treatment of cavernous malformations with symptomatic hemorrhage. World Neurosurg 88:631–639

    Article  PubMed  Google Scholar 

  144. Reinhard M, Schuchardt F, Meckel S, Heinz J, Felbor U, Sure U, Geisen U (2016) Propranolol stops progressive multiple cerebral cavernoma in an adult patient. J Neurol Sci 367:15–17

    Article  PubMed  Google Scholar 

  145. Eisa-Beygi S, Wen XY, Macdonald RL (2014) A call for rigorous study of statins in resolution of cerebral cavernous malformation pathology. Stroke 45:1859–1861

    Article  PubMed  Google Scholar 

  146. Goldberg J, Jaeggi C, Schoeni D, Mordasini P, Raabe A, Bervini D (2018) Bleeding risk of cerebral cavernous malformations in patients on β-blocker medication: a cohort study. J Neurosurg:1–6

    Google Scholar 

  147. Apra C, Dumot C, Bourdillon P, Pelissou-Guyotat I (2019) Could propranolol be beneficial in adult cerebral cavernous malformations? Neurosurg Rev 42:403–408

    Article  PubMed  Google Scholar 

  148. Polster SP, Stadnik A, Akers AL, Cao Y, Christoforidis GA, Fam MD, Flemming KD, Girard R, Hobson N, Koenig JI, Koskimäki J, Lane K, Liao JK, Lee C, Lyne SB, McBee N, Morrison L, Piedad K, Shenkar R, Sorrentino M, Thompson RE, Whitehead KJ, Zeineddine HA, Hanley DF, Awad IA (2018) Atorvastatin treatment of cavernous angiomas with symptomatic hemorrhage exploratory proof of concept (AT CASH EPOC) trial. Neurosurgery

    Google Scholar 

  149. Westover MB, Bianchi MT, Eckman MH, Greenberg SM (2011) Statin use following intracerebral hemorrhage: a decision analysis. Arch Neurol 68:573–579

    Article  PubMed  PubMed Central  Google Scholar 

  150. Goldstein LB (2011) Statins after intracerebral hemorrhage: to treat or not to treat. Arch Neurol 68:565–566

    PubMed  Google Scholar 

  151. Perrelli A, Goitre L, Salzano AM, Moglia A, Scaloni A, Retta SF (2018) Biological activities, health benefits, and therapeutic properties of avenanthramides: from skin protection to prevention and treatment of cerebrovascular diseases. Oxidative Med Cell Longev 2018:6015351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Telethon Foundation (grant GGP15219 to SFR and LT), and the MIUR (Progetto Dipartimento di Eccellenza 2018-2022 to LT and FF).

The authors are grateful to CCM Italia, the Italian Research Network for Cerebral Cavernous Malformation (https://www.ccmitalia.unito.it), and the Associazione Italiana Angiomi Cavernosi (AIAC) Onlus (https://www.aiac.unito.it), including its president Massimo Chiesa, for fundamental collaboration and support. Special thanks also go to Santina Barbaro and Nicola Retta for their invaluable help. This chapter and the book are dedicated to the memory of Rosa Giunta, Fortunato Barbaro, and Adelia Frison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Francesco Retta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Retta, S.F., Perrelli, A., Trabalzini, L., Finetti, F. (2020). From Genes and Mechanisms to Molecular-Targeted Therapies: The Long Climb to the Cure of Cerebral Cavernous Malformation (CCM) Disease. In: Trabalzini, L., Finetti, F., Retta, S. (eds) Cerebral Cavernous Malformations (CCM) . Methods in Molecular Biology, vol 2152. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0640-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0640-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0639-1

  • Online ISBN: 978-1-0716-0640-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics