Skip to main content

Bioinformatics Analysis of Plant Cell Wall Evolution

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2149))

  • 1320 Accesses

Abstract

In the past hundreds of millions of years, from green algae to land plants, cell walls have developed into a highly complex structure that is essential for plant growth and survival. Plant cell wall diversity and evolution can be directly investigated by chemically profiling polysaccharides and lignins in the cell walls of diverse plants and algae. With the increasingly low cost and high throughput of DNA sequencing technologies, cell wall evolution can also be studied by bioinformatics analysis of the occurrence of cell wall synthesis-related enzymes in the genomes and transcriptomes of different species. This chapter presents a bioinformatics workflow running on a Linux platform to process genomic data for such gene occurrence analysis. As a case study, cellulose synthase (CesA) and CesA-like (Csl) protein families are mined for in two newly sequenced organisms: the charophyte green alga Klebsormidium flaccidum (renamed as Klebsormidium nitens) and the fern Lygodium japonicum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  Google Scholar 

  2. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  Google Scholar 

  3. Popper Z, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    Article  CAS  Google Scholar 

  4. Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG (2012) Cell wall evolution and diversity. Front Plant Sci 3:152

    Article  CAS  Google Scholar 

  5. Yin Y, Johns MA, Cao H, Rupani M (2014) A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics 15:1–15

    Google Scholar 

  6. Aya K, Kobayashi M, Tanaka J, Ohyanagi H, Suzuki T, Yano K, Takano T, Matsuoka M (2014) De novo transcriptome assembly of a fern, lygodium japonicum, and a web resource database, ljtrans DB. Plant Cell Physiol 56:e5–e5

    Article  Google Scholar 

  7. Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N et al (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5:3978

    Article  CAS  Google Scholar 

  8. Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  CAS  Google Scholar 

  9. Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol 9:99

    Article  Google Scholar 

  10. Taujale R, Yin Y (2015) Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in Charophycean green algae. PLoS One 10:e0128409

    Article  Google Scholar 

  11. Yin Y, Chen H, Hahn MG, Mohnen D, Xu Y (2010) Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol 153:1729–1746

    Article  CAS  Google Scholar 

  12. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  Google Scholar 

  13. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  14. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  Google Scholar 

  15. Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WG (2014) Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Ann Bot 114:1217–1236

    Article  CAS  Google Scholar 

  16. Harholt J, Sorensen I, Fangel J, Roberts A, Willats WG, Scheller HV, Petersen BL, Banks JA, Ulvskov P (2012) The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall. PLoS One 7:e35846

    Article  CAS  Google Scholar 

  17. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97

    Article  CAS  Google Scholar 

  18. Roberts E, Roberts AW (2009) A cellulose synthase (Cesa) gene from the red alga Porphyra Yezoensis (Rhodophyta). J Phycol 45:203–212

    Article  CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  20. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    Article  CAS  Google Scholar 

  21. Letunic I, Bork P (2011) Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–W478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.F. is supported by the Research & Artistry Award of Northern Illinois University and partially supported by the National Institutes of Health (1R15GM114706) to Y.Y. R.B. was a University Honors Program Undergraduate Student of Northern Illinois University. We acknowledge the Department of Computer Science of NIU for providing free access to the Linux computing cluster Gaea and the Yin lab members for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fitzek, E., Balazic, R., Yin, Y. (2020). Bioinformatics Analysis of Plant Cell Wall Evolution. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics