Skip to main content

In Situ/Subcellular Localization of Arabinogalactan Protein Expression by Fluorescent In Situ Hybridization (FISH)

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2149))

Abstract

The arabinogalactan proteins are highly glycosylated and ubiquitous in plants. They are involved in several aspects of plant development and reproduction; however, the mechanics behind their function remains for the most part unclear, as the carbohydrate moiety, covering the most part of the protein core, is poorly characterized at the individual protein level. Traditional immunolocalization using antibodies that recognize the glycosidic moiety of the protein cannot be used to elucidate individual proteins’ distribution, function, or interactors. Indirect approaches are typically used to study these proteins, relying on reverse genetic analysis of null mutants or using a reporter fusion system. In the method presented here, we propose the use of RNA probes to assist in the localization of individual AGPs expression/mRNAs in tissues of Arabidopsis by fluorescent in situ hybridization, FISH. An extensive description of all aspects of this technique is provided, from RNA probe synthesis to the hybridization, trying to overcome the lack of specific antibodies for the protein core of AGPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  Google Scholar 

  2. Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, Coimbra S (2016) “Love is strong, and you’re so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol Plant 9:601–614

    Article  CAS  Google Scholar 

  3. Costa ML, Sobral R, Ribeiro Costa MM, Amorim MI, Coimbra S (2015) Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Ann Bot 115:81–92

    Article  CAS  Google Scholar 

  4. Pereira AM, Masiero S, Nobre MS, Costa ML, Solís MT, Testillano PS, Sprunck S, Coimbra S (2014) Differential expression patterns of arabinogalactan proteins in Arabidopsis thaliana reproductive tissues. J Exp Bot 65:5459–5471

    Article  CAS  Google Scholar 

  5. El-Tantawy AA, Solís MT, Da Costa ML, Coimbra S, Risueño MC, Testillano PS (2013) Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reprod 26:231–243

    Article  CAS  Google Scholar 

  6. Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    Article  CAS  Google Scholar 

  7. Pilling E, Höfte H (2003) Feedback from the wall. Curr Opin Plant Biol 6:611–706

    Article  CAS  Google Scholar 

  8. Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 171:79–120

    Article  CAS  Google Scholar 

  9. Lopes AL, Costa ML, Sobral R, Costa MM, Amorim MI, Coimbra S (2016) Arabinogalactan proteins and pectin distribution during female gametogenesis in Quercus suber L. Ann Bot 117:949–961

    Article  CAS  Google Scholar 

  10. Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60:3133–3142

    Article  CAS  Google Scholar 

  11. Coimbra S, Costa M, Mendes MA, Pereira AM, Pinto J, Pereira LG (2011) Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. Sex Plant Reprod 23:199–205

    Article  Google Scholar 

  12. Xu Y, Gan ES, Ito T (2014) Misexpression approaches for the manipulation of flower development. Methods Mol Biol 1110:383–399

    Article  CAS  Google Scholar 

  13. McDougall JK, Dunn AR, Jones KW (1972) In situ hybridization of adenovirus RNA and DNA. Nature 236:346–348

    Article  CAS  Google Scholar 

  14. Javelle M, Marco CF, Timmermans M (2011) In situ hybridization for the precise localization of transcripts in plants. J Vis Exp 57:e3328

    Google Scholar 

  15. Biffo S, Tolosano E (1992) The use of radioactively labelled riboprobes for in situ hybridization: background and examples of application. Liver 12:230–237

    Article  CAS  Google Scholar 

  16. Simmons D, Arriza J, Swanson L (1989) A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radio-labelled single-stranded RNA probes. J Histotechnol 12:169–181

    Article  CAS  Google Scholar 

  17. Komminoth P (1992) Digoxigenin as an alternative probe labeling for in situ hybridization. Diagn Mol Pathol 1:142–150

    Article  CAS  Google Scholar 

  18. Höltke HJ, Ankenbauer W, Mühlegger K, Rein R, Sagner G, Seibl R, Walter T (1995) The digoxigenin (DIG) system for non-radioactive labelling and detection of nucleic acids – an overview. Cell Mol Biol 41:883–905

    PubMed  Google Scholar 

  19. Gandrillon O, Solari F, Legrand C, Jurdic P, Samarut J (1996) A rapid and convenient method to prepare DIG-labelled RNA probes for use in non-radioactive in situ hybridization. Mol Cell Probes 10:51–55

    Article  CAS  Google Scholar 

  20. Kiyama H, Emson PC (1991) An in situ hybridization histochemistry method for the use of alkaline phosphatase-labeled oligonucleotide probes in small intestine. J Histochem Cytochem 39:1377–1384

    Article  CAS  Google Scholar 

  21. Testillano PS, Risueño MC (2009) Tracking gene and protein expression during microspore embryogenesis by confocal laser scanning microscopy. In: Touraev A, Forster BP, Mohan Jain S (eds) Advances in haploid production in higher plants. Springer, London, pp 339–347

    Chapter  Google Scholar 

  22. Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, Risueño MC, Testillano PS (2012) DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot 63:6431–6444

    Article  Google Scholar 

  23. Solís MT, Berenguer E, Risueño MC, Testillano PS (2016) BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus. BMC Plant Biol 16:176

    Article  Google Scholar 

  24. Tanious FA, Veal JM, Buczak H, Ratmeyer LS, Wilson WD (1992) DAPI (4′,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry 31:3103–3112

    Article  CAS  Google Scholar 

  25. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  Google Scholar 

  26. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 18:7035–7056

    Article  Google Scholar 

  27. Schenborn ET, Mierendorf RC Jr (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 17:6223–6236

    Article  Google Scholar 

  28. Feliciello I, Chinali G (1993) A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Anal Biochem 212:394–401

    Article  CAS  Google Scholar 

  29. Longin A, Souchier C, French M, Bryon PA (1993) Comparison of anti-fading agents used in fluorescence microscopy: image analysis and laser confocal microscopy study. J Histochem Cytochem 41:1833–1840

    Article  CAS  Google Scholar 

  30. Osborn M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol 24:97–132

    Article  CAS  Google Scholar 

  31. Sitterley G (2008) Poly-l-lysine cell attachment protocol. BioFiles 3:8–12

    Google Scholar 

Download references

Acknowledgments

This work was financed by FEDER through the COMPETE program, and by Portuguese National funds through FCT, Fundação para a Ciência eTecnologia (Project PTDC/AGR-GPL/115358/2009 and FCT - 02-SAICT-2017 – POCI-01-0145-FEDER-027839) and PhD grant SFRH/BD/111781/2015), and received support from Spanish–Portuguese Joint Project Nº E 30/12. EU project 690946 ‘SexSeed’ (Sexual Plant Reproduction – Seed Formation) funded by H2020-MSCA-RISE-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Coimbra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

da Costa, M.L., Solís, MT., Testillano, P.S., Coimbra, S. (2020). In Situ/Subcellular Localization of Arabinogalactan Protein Expression by Fluorescent In Situ Hybridization (FISH). In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics