Skip to main content

Analysis of Plant Cell Walls by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2149))

Abstract

Attenuated total reflectance Fourier transform mid-infrared (ATR-FTIR) spectroscopy is widely applicable for the chemical analysis of biological materials, relatively inexpensive, requires only simple sample preparation, and is of comparatively high-throughput compared to traditional wet chemical or chromatographic methods. It is particularly well suited for the nondestructive analysis of dried and finely ground plant samples for the subsequent prediction of cell wall and other compositional or processing parameters using chemometric regression models. Furthermore, analysis of mid IR spectra by nonregression methods (e.g., principal component analysis) provides a straightforward approach for multivariate comparison of the effects of experimental, processing, and environmental treatments, and genotypic and temporal differences on chemical composition including changes in cell wall composition. There is thus great potential for using ATR-FTIR in the lignocellulosic biomass industry at a number of levels. Here we describe methods for cell wall sample preparation and generation of ATR-FTIR spectra, and suggest techniques for the statistical analysis and/or chemometric pattern recognition between the analyzed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559–568

    CAS  PubMed  Google Scholar 

  2. Himmel ME et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  3. Torres AF et al (2016) Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification. Biotechnol Biofuels 9(1):1–15

    Google Scholar 

  4. Allison GG (2011) Application of Fourier transform mid-infrared spectroscopy (FTIR) for research into biomass feed-stocks. In: Nokolic G (ed) Fourier transforms – new analytical approaches and FTIR strategies. Intech, London, pp 71–88

    Google Scholar 

  5. Stewart B (2005) Infrared spectroscopy: fundamentals and applications. John Wiley & Sons, Ltd, Hoboken, NJ

    Google Scholar 

  6. Smith BC (2011) Fundamentals of Fourier transform infrared spectroscopy, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  7. Movasaghi Z, Rehman S, Rehman IU (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179

    CAS  Google Scholar 

  8. Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109(2):353–362

    CAS  PubMed  Google Scholar 

  9. Zhou G, Taylor G, Polle A (2011) FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods 7(1):9

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar R et al (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    CAS  PubMed  Google Scholar 

  11. Allison GG et al (2009) Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresour Technol 100:2428–2433

    Google Scholar 

  12. da Costa RMF, Allison GG, Bosch M (2015) Cell wall biomass preparation and Fourier transform mid-infrared (FTIR) spectroscopy to study cell wall composition. Bioprotocol 5(11):1–7

    Google Scholar 

  13. Agger J, Meyer AS (2012) Alteration of biomass composition in response to changing substrate particle size and the consequences for enzymatic hydrolysis of corn bran. Bioresources 7:3378–3397

    Google Scholar 

  14. Bridgeman TG et al (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86(1–2):60–72

    CAS  Google Scholar 

  15. Hames B et al (2008) Preparation of samples for compositional analysis. In: Laboratory analytical procedure (LAP). National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  16. Allison GG et al (2010) Measurement of lignocellulose composition as a tool to understand how feed-stocks can be matched to conversion process. In: Bioten. CPL Press, Birmingham

    Google Scholar 

  17. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J Vis Exp 37. http://www.jove.com/video/1837/comprehensive-compositional-analysis-plant-cell-walls-lignocellulosic

  18. Persson S et al (2007) The Arabidopsis irregular xylem8 mutant Is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19(1):237–255

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong Y et al (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol 155(4):1791–1805

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bro R, Smilde AK (2003) Centering and scaling in component analysis. J Chemom 17(1):16–33

    CAS  Google Scholar 

  21. Bro R et al (2008) Cross-validation of component models: a critical look at current methods. Anal Bioanal Chem 390(5):1241–1251

    CAS  PubMed  Google Scholar 

  22. Kjeldahl K, Bro R (2010) Some common misunderstandings in chemometrics. J Chemom 24(7–8):558–564

    CAS  Google Scholar 

  23. Manly BFJ (2005) Multivariate statistical methods a primer. Chapman and Hall, London

    Google Scholar 

  24. Otto M (2007) Chemometrics. Wiley-VCH, Weinheim

    Google Scholar 

  25. Mur LAJ et al (2011) Exploiting the Brachypodium tool box in cereal and grass research. New Phytol 191(2):334–347

    PubMed  Google Scholar 

  26. Allison GG et al (2009) Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. Bioresour Technol 100:1252–1261

    CAS  PubMed  Google Scholar 

  27. Belanche A et al (2013) Estimation of feed crude protein concentration and rumen degradability by Fourier-transform infrared spectroscopy. J Dairy Sci 96(12):7867–7880

    CAS  PubMed  Google Scholar 

  28. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 37. http://www.jove.com/video/1745/comprehensive-compositional-analysis-plant-cell-walls-lignocellulosic

  29. Hatfield RD, Brei K, Grabber JH (1996) Revising the acetyl bromide assay to optimise lignin determinations in forage plants, in 1996 research summaries, ARS, USDA. USDA, Washington, DC

    Google Scholar 

  30. Hatfield RD et al (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47(2):628–632

    CAS  PubMed  Google Scholar 

  31. Yeniay Ö, Göktaş A (2002) A comparison of partial least squares regression with other prediction methods. Hacet J Math Stat 31:99–111

    Google Scholar 

  32. Zhang L, Garcia-Munoz S (2009) A comparison of different methods to estimate prediction uncertainty using partial least squares (PLS): a practitioner’s perspective. Chemom Intell Lab Syst 97(2):152–158

    CAS  Google Scholar 

  33. Allison GG et al (2011) Genotypic variation in cell wall composition in a diverse set of 244 accessions of miscanthus. Biomass Bioenergy 35(11):4740–4747

    CAS  Google Scholar 

  34. Norgaard L et al (2000) Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc 54(3):413–419

    CAS  Google Scholar 

  35. Leardi R, Nørgaard L (2004) Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions. J Chemom 18(11):486–497

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Regional Development Funding through the Welsh Government for BEACON Grant number 8056; the Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant on Energy Grasses & Biorefining (BBS/E/W/10963A01); and Supergen Bioenergy (EPSRC GR/S28204). Special thanks are also due to Prof. Luis Mur (IBERS, Aberystwyth University) for assistance with the Blumeria graminis/Brachypodium distachyon infection experiment which is used in this chapter to illustrate PCA .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon G. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

da Costa, R.M.F., Barrett, W., Carli, J., Allison, G.G. (2020). Analysis of Plant Cell Walls by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics