Skip to main content

An Optimized RNA-Guided Cas9 System for Efficient Simplex and Multiplex Genome Editing in Barley (Hordeum vulgare L.)

  • Protocol
  • First Online:
  • 1494 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The ability to create genetic mutants is crucial for genomics studies in plants and for crop improvement. However, until recently, knockout mutants were created mainly by random mutagenesis, which produced many undesirable mutations and genomic rearrangements. With the emergence of programmable site-specific nucleases, mutations can be introduced precisely at specific genomic locations. CRISPR-Cas9 technology represents the most versatile and efficient genome editing tool to date, and the number of species in which this technology has been applied is still rising. Recently, many efforts have been made to adapt the CRISPR-Cas9 system for efficient genome editing of economically important crop species. At present, CRISPR-Cas9-based targeted mutagenesis of single and multiple target genes can be utilized in barley with near 90% efficiency. Cas9 and sgRNA can be introduced to barley plants in a single T-DNA construct via stable Agrobacterium-mediated transformation of immature embryos. Mutations induced at the target loci are detected in T0 plants, and homozygous transgene-free mutants segregate in the T1 and T2 generations. Here, we present methods and strategies for the induction of single and multiple knockout mutations in barley. The protocol covers all important steps, from target sequence selection and construct optimization and assembly to mutation detection and selection of nontransgenic mutant lines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693. https://doi.org/10.1038/nbt.2655

    Article  CAS  PubMed  Google Scholar 

  2. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691. https://doi.org/10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  4. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586. https://doi.org/10.1073/pnas.1208507109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011. https://doi.org/10.1093/mp/sst121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88(8):3324–3328

    Article  CAS  Google Scholar 

  9. Rouwendal GJ, Mendes O, Wolbert EJ, Douwe de Boer A (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33(6):989–999

    Article  CAS  Google Scholar 

  10. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112(11):3570–3575. https://doi.org/10.1073/pnas.1420294112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914. https://doi.org/10.1093/nar/gku806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327. https://doi.org/10.1186/s12870-014-0327-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gasparis S, Kala M, Przyborowski M, Lyznik LA, Orczyk W, Nadolska-Orczyk A (2018) A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14:111. https://doi.org/10.1186/s13007-018-0382-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):5. https://doi.org/10.1186/s12284-014-0005-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807. https://doi.org/10.1111/pbi.12200

    Article  CAS  PubMed  Google Scholar 

  17. Lawrenson T, Shorinola O, Stacey N, Li CD, Ostergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parra G, Bradnam K, Rose AB, Korf I (2011) Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 39(13):5328–5337. https://doi.org/10.1093/nar/gkr043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartlett JG, Snape JW, Harwood WA (2009) Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J 7(9):856–866. https://doi.org/10.1111/j.1467-7652.2009.00448.x

    Article  CAS  PubMed  Google Scholar 

  20. Harwood WA, Bartlett JG, Alves SC, Perry M, Smedley MA, Leyl N, Snape JW (2009) Barley transformation using agrobacterium-mediated techniques. In: Jones HD, Shewry PR (eds) Transgenic wheat, barley and oats: production and characterization protocols. Humana Press, Totowa, NJ, pp 137–147. https://doi.org/10.1007/978-1-59745-379-0_9

    Chapter  Google Scholar 

  21. Marthe C, Kumlehn J, Hensel G (2015) Barley (Hordeum vulgare L.) transformation using immature embryos. Methods Mol Biol 1223:71–83. https://doi.org/10.1007/978-1-4939-1695-5_6

    Article  CAS  PubMed  Google Scholar 

  22. Qi WW, Zhu T, Tian ZR, Li CB, Zhang W, Song RT (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16:58. https://doi.org/10.1186/s12896-016-0289-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Numamoto M, Maekawa H, Kaneko Y (2017) Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng 124(5):487–492. https://doi.org/10.1016/j.jbiosc.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359. https://doi.org/10.1021/acssynbio.5b00162

    Article  CAS  PubMed  Google Scholar 

  25. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30(8):1180–1182. https://doi.org/10.1093/bioinformatics/btt764

    Article  CAS  PubMed  Google Scholar 

  26. Peng C, Wang H, Xu X, Wang X, Chen X, Wei W, Lai Y, Liu G, Godwin ID, Li J, Zhang L, Xu J (2018) High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. Plant J 95(3):557–567. https://doi.org/10.1111/tpj.13961

    Article  CAS  PubMed  Google Scholar 

  27. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  Google Scholar 

  28. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256. https://doi.org/10.1007/978-1-60761-753-2_15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Polish National Research Center grant 2015/17/D/NZ9/02020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Gasparis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gasparis, S., Przyborowski, M. (2020). An Optimized RNA-Guided Cas9 System for Efficient Simplex and Multiplex Genome Editing in Barley (Hordeum vulgare L.). In: Islam, M.T., Bhowmik, P.K., Molla, K.A. (eds) CRISPR-Cas Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0616-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0616-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0615-5

  • Online ISBN: 978-1-0716-0616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics