Skip to main content

Measurements of Hydrogen Peroxide and Oxidative DNA Damage in a Cell Model of Premature Aging

  • Protocol
  • First Online:
Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2144))

Abstract

Reactive oxygen species (ROS) represent a number of highly reactive oxygen-derived by-products generated by the normal mitochondrial respiration and other cellular metabolic reactions. ROS can oxidize macromolecules including lipids, proteins, and nucleic acids. Under physiological condition, the cellular levels of ROS are controlled by several antioxidant enzymes. However, an imbalance between ROS production and detoxification results in oxidative stress, which leads to the accumulation of macromolecular damage and progressive decline in normal physiological functions.

Oxidative deterioration of DNA can result in lesion that are mutagenic and contribute to aging and age-related diseases. Therefore, methods for the detection of ROS and oxidative deterioration of macromolecules such as DNA in cells provide important tool in aging research. Here, we described protocols for the detection of cytoplasmic and mitochondria pools of hydrogen peroxide, and the DNA modification 8-oxoguanine, a biomarker of oxidative damage, that are applicable to cell-based studies on aging and other related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forkink M, Smeitink JA, Brock R, Willems PH, Koopman WJ (2010) Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta 1797(6–7):1034–1044. https://doi.org/10.1016/j.bbabio.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  2. Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586(5):585–595. https://doi.org/10.1016/j.febslet.2011.10.048

    Article  CAS  PubMed  Google Scholar 

  3. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883. https://doi.org/10.1126/science.1130481

    Article  PubMed  Google Scholar 

  4. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bolisetty S, Jaimes EA (2013) Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 14(3):6306–6344. https://doi.org/10.3390/ijms14036306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  7. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kotiadis VN, Duchen MR, Osellame LD (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840(4):1254–1265. https://doi.org/10.1016/j.bbagen.2013.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19(16):4309–4314. https://doi.org/10.1158/1078-0432.CCR-12-1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26. https://doi.org/10.1007/s12291-014-0446-0

    Article  CAS  PubMed  Google Scholar 

  11. Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434(2):201–210. https://doi.org/10.1042/BJ20101695

    Article  CAS  PubMed  Google Scholar 

  12. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 704(1–3):152–159. https://doi.org/10.1016/j.mrrev.2009.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thapa B, Schlegel HB (2015) Calculations of pKa’s and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. J Phys Chem A 119(21):5134–5144. https://doi.org/10.1021/jp5088866

    Article  CAS  PubMed  Google Scholar 

  15. Guo C, Ding P, Xie C, Ye C, Ye M, Pan C, Cao X, Zhang S, Zheng S (2017) Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget 8(43):75767–75777. https://doi.org/10.18632/oncotarget.20801

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li B, Iglesias-Pedraz JM, Chen LY, Yin F, Cadenas E, Reddy S, Comai L (2014) Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13(2):367–378. https://doi.org/10.1111/acel.12181

    Article  CAS  PubMed  Google Scholar 

  17. Donaldson JG (2001) Immunofluorescence staining. Curr Protoc Cell Biol. Chapter 4:Unit 4.3. https://doi.org/10.1002/0471143030.cb0403s00

  18. Howat WJ, Wilson BA (2014) Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods 70(1):12–19. https://doi.org/10.1016/j.ymeth.2014.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP (2013) Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res 41(5):3115–3129. https://doi.org/10.1093/nar/gkt025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amouroux R, Campalans A, Epe B, Radicella JP (2010) Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. Nucleic Acids Res 38(9):2878–2890. https://doi.org/10.1093/nar/gkp1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bennett BT, Bewersdorf J, Knight KL (2009) Immunofluorescence imaging of DNA damage response proteins: optimizing protocols for super-resolution microscopy. Methods 48(1):63–71. https://doi.org/10.1016/j.ymeth.2009.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharyya D, Hammond AT, Glick BS (2010) High-quality immunofluorescence of cultured cells. Methods Mol Biol 619:403–410. https://doi.org/10.1007/978-1-60327-412-8_24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melan MA, Sluder G (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J Cell Sci 101(Pt 4):731–743

    PubMed  Google Scholar 

  24. Soultanakis RP, Melamede RJ, Bespalov IA, Wallace SS, Beckman KB, Ames BN, Taatjes DJ, Janssen-Heininger YM (2000) Fluorescence detection of 8-oxoguanine in nuclear and mitochondrial DNA of cultured cells using a recombinant Fab and confocal scanning laser microscopy. Free Radic Biol Med 28(6):987–998

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grant Nº 150-2017-FONDECYT from Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) to JMI-P, and grant R01AG034156 form the National Institute of Aging, NIH, USA to LC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Comai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iglesias-Pedraz, J.M., Comai, L. (2020). Measurements of Hydrogen Peroxide and Oxidative DNA Damage in a Cell Model of Premature Aging. In: Curran, S. (eds) Aging. Methods in Molecular Biology, vol 2144. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0592-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0592-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0591-2

  • Online ISBN: 978-1-0716-0592-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics