Skip to main content

Models of Axon Degeneration in Drosophila Larvae

  • Protocol
  • First Online:
Axon Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2143))

Abstract

The fruit fly Drosophila melanogaster has been a powerful model to study axonal biology including axon degeneration and regeneration (Brace et al., J Neurosci 34:8398–8410, 2014; Valakh et al. J Neurosci 33:17863–17,873, 2013; Xiong and Collins J Neurosci 32:610–615, 2012; Xiong et al. 191:211–223, 2010). Both adult and larval injury models have been developed in the fruit fly. This chapter focuses on in vivo and ex vivo methods developed for studying axon degeneration in Drosophila larvae. Additional models have been developed in the adult fly including injury models of olfactory receptor neurons in the brain and a model of axonal degeneration of sensory axons in the wing (Fang and Bonini, Annu Rev. Cell Dev Biol 28:575–597, 2012; Hoopfer et al. Neuron 50:883–895, 2006; Neukomm et al. Proc Natl Acad Sci U S A 111:9965–9970, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang Y, Bonini NM (2012) Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol 28:575–597

    Article  CAS  Google Scholar 

  2. Neukomm LJ, Burdett TC, Gonzalez MA et al (2014) Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proc Natl Acad Sci U S A 111:9965–9970

    Article  CAS  Google Scholar 

  3. Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond 140:423–429

    Google Scholar 

  4. Lunn ER, Perry VH, Brown MC et al (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1:27–33

    Article  CAS  Google Scholar 

  5. Hoopfer ED, McLaughlin T, Watts RJ et al (2006) Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50:883–895

    Article  CAS  Google Scholar 

  6. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  CAS  Google Scholar 

  7. Babetto E, Beirowski B, Janeckova L et al (2010) Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J Neurosci 30:13291–13304

    Article  CAS  Google Scholar 

  8. MacDonald JM, Beach MG, Porpiglia E et al (2006) The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50:869–881

    Article  CAS  Google Scholar 

  9. Sasaki Y, Vohra BPS, Baloh RH, Milbrandt J (2009) Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J Neurosci 29:6526–6534

    Article  CAS  Google Scholar 

  10. Miller BR, Press C, Daniels RW et al (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389

    Article  CAS  Google Scholar 

  11. Gilley J, Coleman MP (2010) Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol 8:e1000300

    Article  Google Scholar 

  12. Essuman K, Summers DW, Sasaki Y et al (2017) The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93:1334–1343.e5

    Article  CAS  Google Scholar 

  13. Gerdts J, Summers DW, Sasaki Y et al (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33:13569–13580

    Article  CAS  Google Scholar 

  14. Gerdts J, Brace EJ, Sasaki Y et al (2015) SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348:453–457

    Article  CAS  Google Scholar 

  15. Osterloh JM, Yang J, Rooney TM et al (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337:481–484

    Article  CAS  Google Scholar 

  16. Gerdts J, Summers D, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89(3):449–460

    Article  CAS  Google Scholar 

  17. Collins CA, DiAntonio A (2007) Synaptic development: insights from Drosophila. Curr Opin Neurobiol 17:35–42

    Article  CAS  Google Scholar 

  18. Xiong X, Wang X, Ewanek R et al (2010) Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191:211–223

    Article  CAS  Google Scholar 

  19. Kuo CT, Zhu S, Younger S et al (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51:283–290

    Article  CAS  Google Scholar 

  20. Ritzenthaler S, Suzuki E, Chiba A (2000) Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 3:1012–1017

    Article  CAS  Google Scholar 

  21. Valakh V, Walker LJ, Skeath JB, DiAntonio A (2013) Loss of the spectraplakin short stop activates the DLK injury response pathway in Drosophila. J Neurosci 33:17863–17873

    Article  CAS  Google Scholar 

  22. Brace EJ, DiAntonio A (2017) Models of axon regeneration in Drosophila. Exp Neurol 287:310–317

    Article  CAS  Google Scholar 

  23. Hao Y, Collins C (2017) Intrinsic mechanisms for axon regeneration: insights from injured axons in Drosophila. Curr Opin Genet Dev 44:84–91

    Article  CAS  Google Scholar 

  24. Karney-Grobe S, Russo A, Frey E et al (2018) HSP90 is a chaperone for DLK and is required for axon injury signaling. Proc Natl Acad Sci U S A 115:E9899–E9908

    Article  CAS  Google Scholar 

  25. Daniels RW, Collins CA, Gelfand MV et al (2004) Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 24:10466–10474

    Article  CAS  Google Scholar 

  26. Marrus SB, Portman SL, Allen MJ et al (2004) Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci 24:1406–1415

    Article  CAS  Google Scholar 

  27. Schmid A, Sigrist SJ (2008) Analysis of neuromuscular junctions: histology and in vivo imaging. Methods Mol Biol Clifton NJ 420:239–251

    Article  CAS  Google Scholar 

  28. Brace EJ, Wu C, Valakh V, DiAntonio A (2014) SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury. J Neurosci 34:8398–8410

    Article  CAS  Google Scholar 

  29. Xiong X, Collins CA (2012) A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 32:610–615

    Article  CAS  Google Scholar 

  30. Mishra B, Carson R, Hume RI, Collins CA (2013) Sodium and potassium currents influence Wallerian degeneration of injured Drosophila axons. J Neurosci 33:18728–18739

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the following sources to A.D.: the Muscular Dystrophy Association (MDA349925) and the National Institutes of Health Grant NIH (NS087632). We thank members of the DiAntonio Lab for helpful comments and discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Brace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brace, E.J., DiAntonio, A. (2020). Models of Axon Degeneration in Drosophila Larvae. In: Babetto, E. (eds) Axon Degeneration. Methods in Molecular Biology, vol 2143. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0585-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0585-1_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0584-4

  • Online ISBN: 978-1-0716-0585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics