Skip to main content

Droplet Digital PCR and Immunohistochemistry Techniques to Detect Zika Virus in the Central Nervous System of Mice

  • Protocol
  • First Online:
Zika Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2142))

Abstract

Detection of Zika virus (ZIKV) in the central nervous system (CNS) is a critical step when studying the pathogenesis of the infection in animal models. Both viral load determination and immunohistochemistry (IHC) staining are useful methods to quantitatively and qualitatively characterize viral infections in target tissues. Here, we describe viral RNA load determination by droplet digital PCR as well as protein detection by polymer-based IHC as effective techniques to quantify and localize ZIKV in the CNS of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mlakar J, Korva M, Tul N et al (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958. https://doi.org/10.1056/NEJMoa1600651

    Article  CAS  PubMed  Google Scholar 

  2. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and birth defects—reviewing the evidence for causality. N Engl J Med 374:1981–1987. https://doi.org/10.1056/NEJMsr1604338

    Article  CAS  PubMed  Google Scholar 

  3. Panchaud A, Stojanov M, Ammerdorffer A et al (2016) Emerging role of Zika virus in adverse fetal and neonatal outcomes. Clin Microbiol Rev 29:659–694. https://doi.org/10.1128/CMR.00014-16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cao-Lormeau VM, Blake A, Mons S et al (2016) Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–1539. https://doi.org/10.1016/S0140-6736(16)00562-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krauer F, Riesen M, Reveiz L et al (2017) Zika Virus infection as a cause of congenital brain abnormalities and Guillain-Barré Syndrome: systematic review. PLoS Med 14:e1002203. https://doi.org/10.1371/journal.pmed.1002203

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lucchese G, Kanduc D (2016) Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 15:801–808. https://doi.org/10.1016/j.autrev.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  7. Araujo AQC, Silva MTT, Araujo APQC (2016) Zika virus-associated neurological disorders: a review. Brain 139:2122–2130. https://doi.org/10.1093/brain/aww158

    Article  PubMed  Google Scholar 

  8. Best SM (2017) The many faces of the Flavivirus NS5 Protein in antagonism of type I interferon signaling. J Virol 91:e01970–e01916. https://doi.org/10.1128/JVI.01970-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lazear HM, Govero J, Smith AM et al (2016) A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720–730. https://doi.org/10.1016/j.chom.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi SL, Tesh RB, Azar SR et al (2016) Characterization of a novel murine model to study Zika virus. Am J Trop Med Hyg 94:1362–1369. https://doi.org/10.4269/ajtmh.16-0111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dowall SD, Graham VA, Rayner E et al (2016) A susceptible mouse model for Zika virus infection. PLoS Negl Trop Dis 10:e0004658. https://doi.org/10.1371/journal.pntd.0004658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tripathi S, Balasubramaniam VRMT, Brown JA et al (2017) A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 13:e1006258. https://doi.org/10.1371/journal.ppat.1006258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith DR, Hollidge B, Daye S et al (2017) Neuropathogenesis of Zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type I interferon. PLoS Negl Trop Dis 11:e0005296. https://doi.org/10.1371/journal.pntd.0005296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piret J, Carbonneau J, Rhéaume C et al (2018) Predominant role of IPS-1 over TRIF adaptor proteins in early innate immune response against Zika virus in mice. J Gen Virol 99:209–218. https://doi.org/10.1099/jgv.0.000992

    Article  CAS  PubMed  Google Scholar 

  15. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610. https://doi.org/10.1021/ac202028g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005. https://doi.org/10.1038/nmeth.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sabattini E, Bisgaard K, Ascani S et al (1998) The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51:506–511

    Article  CAS  Google Scholar 

  18. Vosse BAH, Seelentag W, Bachmann A et al (2007) Background staining of visualization systems in immunohistochemistry: comparison of the Avidin-Biotin Complex system and the EnVision+ system. Appl Immunohistochem Mol Morphol 15:103–107. https://doi.org/10.1097/01.pai.0000213102.33816.13

    Article  CAS  PubMed  Google Scholar 

  19. Lanciotti RS, Kosoy OL, Laven JJ et al (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14:1232–1239. https://doi.org/10.3201/eid1408.080287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimizu S (2004) Routes of administration. In: Hedrich H, Bullock G (eds) The laboratory mouse. Elsevier, Amsterdam, p 535

    Google Scholar 

  21. Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176. https://doi.org/10.1038/nature05453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Foundation Grant from the Canadian Institutes of Health Research (grant no. 148361 to G.B.). G.B. is the holder of the Canada research chair on emerging viruses and antiviral resistance. We would like to thank Maude Bordeleau for revising the protocol and proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Boivin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Enlow, W., Piret, J., Boivin, G. (2020). Droplet Digital PCR and Immunohistochemistry Techniques to Detect Zika Virus in the Central Nervous System of Mice. In: Kobinger, G., Racine, T. (eds) Zika Virus. Methods in Molecular Biology, vol 2142. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0581-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0581-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0580-6

  • Online ISBN: 978-1-0716-0581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics