Skip to main content

In Silico Analysis of Class III Peroxidases: Hypothetical Structure, Ligand Binding Sites, Posttranslational Modifications, and Interaction with Substrates

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2139))

Abstract

Functional analyses of peroxidases are a major challenge. In silico analysis appears to be a powerful tool to overcome at least some of the problems that arose from (1) the numerous possible functions of peroxidases, (2) their low substrate specificity, and (3) the compensation of knockout mutants by other isoenzymes. Amino acid sequences and crystal structures of peroxidases were used for the prediction of tertiary structures, posttranslational modifications, ligand and substrate binding sites, and so on of uncharacterized peroxidases. This protocol presents tools and their applications for an in silico analysis of soluble and membrane-bound peroxidases, but it may be used for other proteins, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Welinder KG, Justesen AF, Kjaersgard IV et al (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  CAS  PubMed  Google Scholar 

  2. Zámocký M, Furtmüller PG, Obinger C (2010) Evolution of structure and function of class I peroxidases. Arch Biochem Biophys 500:45–57

    Article  PubMed  CAS  Google Scholar 

  3. Hiraga S, Sasaki K, Ito H et al (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  CAS  PubMed  Google Scholar 

  4. Passardi F, Cosio C, Penel C et al (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  5. Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–409

    Article  CAS  PubMed  Google Scholar 

  6. Lüthje S, Meisrimler CN, Hopff D et al (2011) Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants. Phytochemistry 72:1124–1135

    Article  PubMed  CAS  Google Scholar 

  7. Herrero J, Esteban-Carrasco A, Zapata JM (2013a) Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol Biochem 67:77–86

    Article  CAS  PubMed  Google Scholar 

  8. Herrero J, Fernández-Pérez F, Yebra T et al (2013b) Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta 237:1599–1612

    Article  CAS  PubMed  Google Scholar 

  9. Shigeto J, Nagano M, Fujita K et al (2014) Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification. PLoS One 9:e105332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lüthje S, Martinez-Cortes T (2018) Membrane-bound class III peroxidases: unexpected enzymes with exciting functions. Int J Mol Sci 19:E2876

    Article  PubMed  CAS  Google Scholar 

  11. Artimo P, Jonnalagedda M, Arnold K et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. UniProt Consortium T (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sayers EW, Agarwala R, Bolton EE et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47:D23–D28

    Article  CAS  PubMed  Google Scholar 

  14. Schwacke R, Schneider A, Van Der Graaff E et al (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fawal N, Li Q, Savelli B et al (2013) PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res 41:D441–D444

    Article  CAS  PubMed  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    Article  CAS  PubMed  Google Scholar 

  18. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  19. Ren J, Wen L, Gao X et al (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sigrist CJA, de Castro E, Cerutti L et al (2012) New and continuing developments at PROSITE. Nucleic Acids Res 21:D344–D347

    Article  CAS  Google Scholar 

  21. Blom N, Sicheritz-Ponten T, Gupta R et al (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  CAS  PubMed  Google Scholar 

  22. Fankhauser N, Mäser P (2005) Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21:1846–1852

    Article  CAS  PubMed  Google Scholar 

  23. Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  24. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  25. Möller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  PubMed  Google Scholar 

  26. Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6:122–130

    CAS  PubMed  Google Scholar 

  27. Nakai K, Horton P (1999) PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    Article  CAS  PubMed  Google Scholar 

  28. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(Suppl):W469–W473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  32. Moural TW, Lewis KM, Barnaba C et al (2017) Characterization of class III peroxidases from Switchgrass. Plant Physiol 173:417–433

    Article  CAS  PubMed  Google Scholar 

  33. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  34. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris GM, Huey R, Lindstrom W et al (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791

    Article  CAS  Google Scholar 

  36. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and autodock/Vina. J Comput Aided Mol Des 24:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nanda T, Tripathy K, Ashwin P (2011) Integration of Bioinformatics Tools for Proteomics Research. J Comput Sci Syst Biol S13. https://doi.org/10.4172/jcsb.S13-002

  38. Hetenyi C, van der Spoel D (2011) Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Protein Sci 20:880–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69:139–159

    Article  CAS  PubMed  Google Scholar 

  40. Mashiach E, Schneidman-Duhovny D, Andrusier N et al (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36:W229–W232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneidman-Duhovny D, Inbar Y, Nussinov R et al (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee Y, Rubio MC, Alassimone J et al (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe L, de Moura PR, Bleicher L et al (2010) Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). J Struct Biol 169:226–242

    Article  CAS  PubMed  Google Scholar 

  45. Berglund GI, Carlsson GH, Smith AT et al (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD student grant to K. R. from the Dr. Elisabeth Appuhn Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Lüthje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lüthje, S., Ramanathan, K. (2020). In Silico Analysis of Class III Peroxidases: Hypothetical Structure, Ligand Binding Sites, Posttranslational Modifications, and Interaction with Substrates. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics