Skip to main content

Computational Protocol for Determining Conformational Ensembles of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

In modelling experimental measurements from intrinsically disordered proteins, it is essential to account for the very broad distribution of structures which they populate. A natural method for doing this is via computer simulations, particularly those that generate a reasonably accurate initial molecular ensemble. In this chapter, I present a reweighting approach that may be used to determine a conformational ensemble by combining experimental information with molecular simulations. The advantages and difficulties associated with this approach are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das RK, Huang Y, Phillips AH et al (2016) Cryptic sequence features within the disordered protein p27Kip1 regulate cell cycle signaling. Proc Natl Acad Sci U S A 113:5616–5621

    Article  CAS  Google Scholar 

  2. Gopich IV, Szabo A (2012) Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Natl Acad Sci U S A 109:7747–7752

    Article  CAS  Google Scholar 

  3. Chung HS, Louis JM, Gopich IV (2016) Analysis of fluorescence lifetime and energy transfer efficiency in single-molecule photon trajectories of fast-folding proteins. J Phys Chem B 120:680–699

    Article  CAS  Google Scholar 

  4. Hummer G, Köfinger J (2015) Bayesian ensemble refinement by replica simulations and reweighting. J Chem Phys 143:243150

    Article  Google Scholar 

  5. Lindorff-Larsen K, Best RB, Depristo MA et al (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    Article  CAS  Google Scholar 

  6. Borgia A, Borgia MB, Bugge K et al (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66

    Article  CAS  Google Scholar 

  7. Holmstrom ED, Holla A, Zheng W et al (2018) Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol 611:297–325

    Google Scholar 

  8. Holmstrom ED, Liu Z, Nettels D et al (2019) Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat Commun 10:2453

    Article  Google Scholar 

  9. Best RB (2017) Computational and theoretical advances in studies of intrinsically disordered proteins. Curr Opin Struct Biol 42:147–154

    Article  CAS  Google Scholar 

  10. Huang J, MacKerell AD (2019) Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol 48:40–48

    Article  Google Scholar 

  11. Best RB, Zheng W, Mittal J (2014) Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput 10:5113–5124

    Article  CAS  Google Scholar 

  12. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115(21):E4758–E4766

    Article  CAS  Google Scholar 

  13. Huang J, Rauscher S, Nawrocki G et al (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  Google Scholar 

  14. Vitalis A, Pappu RV (2008) ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J Comput Chem 30:673–699

    Article  Google Scholar 

  15. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  Google Scholar 

  16. Bottaro S, Lindorff-Larsen K, Best RB (2013) Variational optimization of an all-atom implicit solvent force field to match explicit solvent simulation data. J Chem Theory Comput 9:5641–5652

    Article  CAS  Google Scholar 

  17. Onufriev AV, Case DA (2019) Generalized born implicit solvent models for biomolecules. Annu Rev Biophys 48:275–296

    Article  CAS  Google Scholar 

  18. Hess B, Kutzner C, Van der Spoel D et al (2008) GROMACS4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  19. Eastman P, Swails J, Chodera JD et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7):e1005659. https://doi.org/10.1371/journal.pcbi.1005659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitalis A, Pappu RV (2009) Methods for Monte Carlo simulations of biomacromolecules. Annu Rep Comput Chem 5:49–76

    Article  CAS  Google Scholar 

  21. Tribello GA, Bonomi M, Branduardi D et al (2014) Plumed 2: new feathers for an old bird. Comput Phys Commun 185:604–613

    Article  CAS  Google Scholar 

  22. Gibbs EB, Showalter SA (2015) Quantitative biophysical characterization of intrinsically disordered proteins. Biochemistry 54:1314–1326

    Article  CAS  Google Scholar 

  23. Ozenne V, Bauer F, Salmon L et al (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28(11):1463–1470

    Article  CAS  Google Scholar 

  24. Kohn JE, Millett IS, Jacob J et al (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A 101(34):12491–12496

    Article  CAS  Google Scholar 

  25. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, Cambridge, Massachusetts

    Google Scholar 

  26. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics methods for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  27. Liu P, Kim B, Friesner RA et al (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci U S A 102:13749–13754

    Article  CAS  Google Scholar 

  28. Bellaiche MMJ, Best RB (2018) Molecular determinants of Aβ42 adsorption to amyloid fibril surfaces. J Phys Chem Lett 9(22):6437–6443

    Article  CAS  Google Scholar 

  29. Nadler W, Hansmann UHE (2007) Dynamics and optimal number of replicas in parallel tempering simulations. Phys Rev E 76:065701

    Article  Google Scholar 

  30. Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113:9004–9015

    Article  CAS  Google Scholar 

  31. Best RB, Mittal J (2010) Balance between α and β structures in ab initio protein folding. J Phys Chem B 114:8790–8798

    Article  CAS  Google Scholar 

  32. Domanski J, Sansom MSP, Stansfeld P et al (2018) Balancing force field protein-lipid interactions to capture transmembrane helix-helix association. J Chem Theory Comput 14:1706–1715

    Article  CAS  Google Scholar 

  33. Borgia A, Zheng W, Buholzer K et al (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138:11714–11726

    Article  CAS  Google Scholar 

  34. Gibbs EB, Lu F, Portz B et al (2017) Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat Commun 8:15233

    Article  CAS  Google Scholar 

  35. Michaud-Agrawal N, Denning EJ, Woolf TB et al (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327

    Article  CAS  Google Scholar 

  36. Holmstrom ED, Holla A, Zheng W et al (2018) Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol 611:287–325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.B. is supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Best .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Best, R.B. (2020). Computational Protocol for Determining Conformational Ensembles of Intrinsically Disordered Proteins. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics