Skip to main content

Proteomic Analysis of Brain Tissue from a Chronic Model of Stress Using a Combined 2D Gel Electrophoresis and Mass Spectrometry Approach

  • Protocol
  • First Online:
Clinical and Preclinical Models for Maximizing Healthspan

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

  • 981 Accesses

Abstract

Aging of the brain can result in excessive glucocorticoid secretion, potentially due to chronic stress and related situations. This can lead to dysfunction of brain areas involved in control of the hypothalamic-pituitary adrenal axis, growth, and metabolism, as well as areas associated with cognition and mood regulation. This chapter presents a protocol for two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis of hypothalamus and hippocampus tissue obtained from mice following exposure to high levels of corticosterone for 14 days. The chapter also presents a method for identification of the affected proteins in these brain regions using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouanes S, Popp J (2019) High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci 11:43. https://doi.org/10.3389/fnagi.2019.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D et al (2019) Adrenal aging and its implications on stress responsiveness in humans. Front Endocrinol (Lausanne) 10:54. https://doi.org/10.3389/fendo.2019.00054

    Article  Google Scholar 

  3. Björntorp P (2002) Alterations in the ageing corticotropic stress-response axis. Novartis Found Symp 242:46–58

    PubMed  Google Scholar 

  4. Pedersen WA, Wan R, Mattson MP (2001) Impact of aging on stress-responsive neuroendocrine systems. Mech Ageing Dev 122(9):963–983

    Article  CAS  Google Scholar 

  5. Gupta D, Morley JE (2014) Hypothalamic-pituitary-adrenal (HPA) axis and aging. Compr Physiol 4(4):1495–1510

    Article  Google Scholar 

  6. Burford NG, Webster NA, Cruz-Topete D (2017) Hypothalamic-pituitary-adrenal axis modulation of glucocorticoids in the cardiovascular system. Int J Mol Sci 18(10). pii: E2150. https://doi.org/10.3390/ijms18102150

  7. Joseph JJ, Golden SH (2017) Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci 1391(1):20–34

    Article  Google Scholar 

  8. Wolf T, Tsenkova V, Ryff CD, Davidson RJ, Willette AA (2018) Neural, hormonal, and cognitive correlates of metabolic dysfunction and emotional reactivity. Psychosom Med 80(5):452–459

    Article  CAS  Google Scholar 

  9. Raber J (1998) Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. Mol Neurobiol 18(1):1–22

    Article  CAS  Google Scholar 

  10. Geer EB (ed) (2016) The hypothalamic pituitary adrenal axis in health and disease: Cushing’s syndrome and beyond, 1st edn. Springer, New York. 2017 edn. ISBN-10: 3319459481

    Google Scholar 

  11. Arana GW, Baldessarin RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatry 42(12):11931204

    Article  Google Scholar 

  12. Bourdeau I, Bard C, Noel B, Leclerc I, Cordeau MP, Belair M et al (2002) A loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metab 87(5):1949–1954

    CAS  PubMed  Google Scholar 

  13. Sánchez MM, Young LJ, Plotsky PM, Insel TR (2000) Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci 20(12):4657–4668

    Article  Google Scholar 

  14. Lucassen PJ, Oomen CA, Naninck EF, Fitzsimons CP, van Dam AM, Czeh B et al (2015) Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation. Cold Spring Harb Perspect Biol 7:a021303. https://doi.org/10.1101/cshperspect.a021303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ, Lightman S (2016) Circadian and ultradian glucocorticoid rhythmicity: implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front Neuroendocrinol 41:44–58

    Article  CAS  Google Scholar 

  16. Gądek-Michalska A, Spyrka J, Rachwalska P, Tadeusz J, Bugajski J (2013) Influence of chronic stress on brain corticosteroid receptors and HPA axis activity. Pharmacol Rep 65(5):1163–1175

    Article  Google Scholar 

  17. Sheline YI, Sanghavi M, Mintun MA, Gado MHJ (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Neuroscience 19(12):5034–5043

    Article  CAS  Google Scholar 

  18. Meleady P (2018) Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol Biol 1664:3–14

    Article  CAS  Google Scholar 

  19. Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K et al (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3(7):1162–1171

    Article  CAS  Google Scholar 

  20. Paxinos G, Franklin KBJ (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 5th edn. Academic Press, Cambridge, MA. ISBN-10: 0128161574

    Google Scholar 

  21. Huynh ML, Russell P, Walsh B (2009) Tryptic digestion of in-gel proteins for mass spectrometry analysis. Methods Mol Biol 519:507–513

    Article  CAS  Google Scholar 

  22. Berth M, Moser FM, Kolbe M, Bernhardt J (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76(6):1223–1243

    Article  CAS  Google Scholar 

  23. Manfredi M, Robotti E, Marengo E (2016) Algorithms for warping of 2-D PAGE maps. Methods Mol Biol 1384:119–154

    Article  CAS  Google Scholar 

  24. de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol 3:82. https://doi.org/10.3389/fphar.2012.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alageel A, Tomasi J, Tersigni C, Brietzke E, Zuckerman H, Subramaniapillai M (2018) Evidence supporting a mechanistic role of sirtuins in mood and metabolic disorders. Prog Neuropsychopharmacol Biol Psychiatry 86:95–101

    Article  CAS  Google Scholar 

  26. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5(2):142–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C. (2020). Proteomic Analysis of Brain Tissue from a Chronic Model of Stress Using a Combined 2D Gel Electrophoresis and Mass Spectrometry Approach. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics