Skip to main content

Two-Dimensional Gel Electrophoresis Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Eye Lens to Identify Biomarkers of Age-Related Cataract

  • Protocol
  • First Online:
Clinical and Preclinical Models for Maximizing Healthspan

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

  • 997 Accesses

Abstract

This chapter describes the application of two-dimensional gel electrophoresis (2DGE) combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the analysis of rat eye lens proteins. The main purpose was to identify proteins that may serve as potential biomarkers in age-related cataract formation. This includes the family of proteins known as the crystallins. Structural proteins and enzymes involved antioxidant activities. In addition, we also analyzed lenses from other species to illustrate the potential of using this technique in clinical and preclinical biomarker studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray NJ (2015) Biophysical chemistry of the ageing eye lens. Biophys Rev 7(4):353–368

    Article  CAS  Google Scholar 

  2. Moreau KL, King JA (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282

    Article  CAS  Google Scholar 

  3. Aarts HJ, Lubsen NH, Schoenmakers JG (1989) Crystallin gene expression during rat lens development. Eur J Biochem 183(1):31–36

    Article  CAS  Google Scholar 

  4. Dahm R, van Marle J, Quinlan RA, Prescott AR, Vrensen GFJM (2011) Homeostasis in the vertebrate lens: mechanisms of solute exchange. Philos Trans R Soc Lond B 366(1568):1265–1277

    Article  CAS  Google Scholar 

  5. Mochizuki T, Masai I (2014) The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens. Develop Growth Differ 56(5):387–401

    Article  CAS  Google Scholar 

  6. Wistow G (2012) The human crystallin gene families. Hum Genomics 6:26. https://doi.org/10.1186/1479-7364-6-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Callis PR, King J (2009) Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: the γ-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry 48(17):3708–3716

    Article  CAS  Google Scholar 

  8. Zhao H, Brown PH, Magone MT, Schuck P (2011) The molecular refractive function of lens γ-crystallins. J Mol Biol 411(3):680–699

    Article  CAS  Google Scholar 

  9. Mahendiran K, Elie C, Nebel J-C, Ryan A, Pierscionek BK (2014) Primary sequence contribution to the optical function of the eye lens. Sci Rep 4:5195. https://doi.org/10.1038/srep05195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234

    Article  Google Scholar 

  11. Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A (2015) Lens biology and biochemistry. Prog Mol Biol Transl Sci 134:169–201

    Article  CAS  Google Scholar 

  12. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Vision Loss Expert Group of the Global Burden of Disease Study et al (2016) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39(9):1643–1649

    Article  Google Scholar 

  13. Periyasamy P, Shinohara T (2017) Age-related cataracts: Role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 60:1–19

    Article  CAS  Google Scholar 

  14. Zhou J, Hui Y, Li Y (2001) Expression of vimentin in lens epithelial cells of age-related cataract. Zhonghua Yan Ke Za Zhi 37(5):342–345

    CAS  PubMed  Google Scholar 

  15. Andley UP, Malone JP, Townsend RR (2014) In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin. PLoS One 9(4):e95507. https://doi.org/10.1371/journal.pone.0095507

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou HY, Yan H, Wang LL, Yan WJ, Shui YB, Beebe DC (2015) Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. Proteomics Clin Appl 9(7-8):776–786

    Article  CAS  Google Scholar 

  17. Matsui NM, Smith DM, Clauser KR, Fichmann J, Andrews LE, Sullivan CM (1997) Immobilized pH gradient two-dimensional gel electrophoresis and mass spectrometric identification of cytokine-regulated proteins in ME-180 cervical carcinoma cells. Electrophoresis 18(3–4):409–417

    Article  CAS  Google Scholar 

  18. Müller DR, Schindler P, Coulot M, Voshol H, van Oostrum J (1999) Mass spectrometric characterization of stathmin isoforms separated by 2D PAGE. J Mass Spectrom 34(4):336–345

    Article  Google Scholar 

  19. England K, Cotter T (2004) Identification of carbonylated proteins by MALDI-TOF mass spectroscopy reveals susceptibility of ER. Biochem Biophys Res Commun 320(1):123–130

    Article  CAS  Google Scholar 

  20. Person MD, Shen J, Traner A, Hensley SC, Lo HH, Abbruzzese JL et al (2006) Protein fragment domains identified using 2D gel electrophoresis/MALDI-TOF. J Biomol Tech 17(2):145–456

    PubMed  PubMed Central  Google Scholar 

  21. Wöhlbrand L, Ruppersberg HS, Feenders C, Blasius B, Braun HP, Rabus R (2016) Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics 16(6):973–988

    Article  Google Scholar 

  22. Guest PC, Skynner HA, Salim K, Tattersall FD, Knowles MR, Atack JR (2006) Detection of gender differences in rat lens proteins using 2-D-DIGE. Proteomics 6(2):667–676

    Article  CAS  Google Scholar 

  23. https://www.uniprot.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C. (2020). Two-Dimensional Gel Electrophoresis Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Eye Lens to Identify Biomarkers of Age-Related Cataract. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics