Skip to main content

Preparation and Analysis of Quantum Dots: Applications of Capillary Electrophoresis

  • Protocol
  • First Online:
Quantum Dots

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

  • 1002 Accesses

Abstract

The implementation of quantum dots in analytical chemistry has already advanced from basic research activities to routine applications of commercially available fluorescent agents present in sophisticated assays kits. Nevertheless, a further development of new preparation and characterization methods of nanoparticles is still required to increase the sensitivity of analytical methods substantially. Thus, in many bioanalytical applications, important molecules such as DNA, proteins, and antibodies are routinely conjugated with fluorescent tags to reach even the absolute sensitivity, that is, the capability to detect a single molecule in complex matrices. Semiconductor quantum dots have already proved to be suitable components of highly luminescent tags, probes, and sensors with broad applicability in analytical chemistry. Quantum dots provide high extinction coefficients together with wide ranges of excitation wavelengths, size- and composition-tunable emissions, narrow and symmetric emission spectra, good quantum yields, relatively long size-dependent luminescence lifetime, and low photobleaching. Most of these properties are superior when compared with conventional organic fluorescent dyes. In this chapter, optimized procedures for the preparation of water-dispersed CdTe quantum dots; their coatings and conjugation reactions with antibodies, DNA, and macrocycles; and their analyses by capillary electrophoresis are described. The potential of capillary electrophoresis for fast analyses of nanoparticles, their conjugates with antibodies and immunocomplexes with targeted antigens, is demonstrated as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  2. Xu XY, Zhao Z, Qin LD et al (2008) Fluorescence recovery assay for the detection of protein-DNA binding. Anal Chem 80:5616–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eychmuller A, Rogach AL (2000) Chemistry and photophysics of thiol-stabilized II–VI semiconductor nanocrystals. Pure Appl Chem 72:179–188

    Article  CAS  Google Scholar 

  4. Rogach AL, Franzl T, Klar TA et al (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C 111:14628–14637

    Article  CAS  Google Scholar 

  5. Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  6. Fu AH, Gu WW, Larabell C et al (2005) Semiconductor nanocrystals for biological imaging. Curr Opin Neurobiol 15:568–575

    Article  CAS  PubMed  Google Scholar 

  7. Burda C, Chen XB, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  8. Medintz IL, Pons T, Delehanty JB et al (2008) Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjug Chem 19:1785–1795

    Article  CAS  PubMed  Google Scholar 

  9. Parak WJ, Boudreau R, Le Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885

    Article  CAS  Google Scholar 

  10. Bilan R, Nabiev I, Sukhanova A (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem 17:2103–2114

    Article  CAS  PubMed  Google Scholar 

  11. Lee JY, Kim JS, Park JC et al (2016) Protein-quantum dot nanohybrids for bioanalytical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:178–190

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee A, Shim Y, Myong Song J (2016) Quantum dot as probe for disease diagnosis and monitoring. Biotechnol J 11:31–42

    Article  CAS  PubMed  Google Scholar 

  13. Radenkovic D, Kobayashi H, Remsey-Semmelweis E et al (2016) Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. Nanomedicine 12:1581–1592

    Article  CAS  PubMed  Google Scholar 

  14. Harris RD, Bettis Homan S, Kodaimati M et al (2016) Electronic processes within quantum dot-molecule complexes. Chem Rev 116:12865–12919

    Article  CAS  PubMed  Google Scholar 

  15. Lim SJ, Ma L, Schleife A et al (2016) Quantum dot surface engineering: toward inert fluorophores with compact size and bright, stable emission. Coord Chem Rev 320–321:216–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Voracova I, Kleparnik K, Liskova M et al (2015) Determination of zeta-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis 36:867–874

    Article  CAS  PubMed  Google Scholar 

  17. Sychugov I, Valenta J, Linnros J (2017) Probing silicon quantum dots by single-dot techniques. Nanotechnology 28:072002

    Article  PubMed  CAS  Google Scholar 

  18. Rajh T, Micic OI, Nozik AJ (1993) Synthesis and characterization of surface-modified colloidal Cdte quantum dots. J Phys Chem 97:11999–12003

    Article  CAS  Google Scholar 

  19. Ma J, Chen JY, Zhang Y et al (2007) Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: process and mechanism. J Phys Chem B 111:12012–12016

    Article  CAS  PubMed  Google Scholar 

  20. Wang JH, Wang HQ, Zhang HL et al (2007) Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal Bioanal Chem 388:969–974

    Article  CAS  PubMed  Google Scholar 

  21. Ma J, Chen JY, Guo J et al (2006) Improvement of the photostability of thiol-capped CdTe quantum dots in aqueous solutions and in living cells by surface treatment. Nanotechnology 17:5875–5881

    Article  CAS  Google Scholar 

  22. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  23. Feng H, Law W, Yu L et al (2007) Immunoassay by capillary electrophoresis with quantum dots. J Chromatogr A 1156:75–79

    Article  CAS  PubMed  Google Scholar 

  24. Goldman ER, Balighian ED, Kuno MK et al (2002) Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays. Phys Status Solid B Basic Res 229:407–414

    Article  CAS  Google Scholar 

  25. Huang XY, Li L, Qian HF et al (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143

    Article  CAS  Google Scholar 

  26. Farias PMA, Santos BS, Menezes FD et al (2006) Monitoring activity of living cells marked with colloidal semiconductor quantum dots - art. no. 60880G. Imag Manipul Anal Biomol Cells Tissues IV 6088:G880

    Google Scholar 

  27. Hu J, Wang ZY, Li CC et al (2017) Advances in single quantum dot-based nanosensors. Chem Commun 53:13284–13295

    Article  CAS  Google Scholar 

  28. Kovtun O, Tomlinson ID, Bailey DM et al (2018) Single quantum dot tracking illuminates neuroscience at the nanoscale. Chem Phys Lett 706:741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dennis AM, Bao G (2008) Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett 8:1439–1445

    Article  CAS  PubMed  Google Scholar 

  30. Goryacheva OA, Beloglazova NV, Vostrikova AM et al (2017) Lanthanide-to-quantum dot Forster resonance energy transfer (FRET): application for immunoassay. Talanta 164:377–385

    Article  CAS  PubMed  Google Scholar 

  31. Hildebrandt N, Spillmann CM, Algar WR et al (2017) Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem Rev 117:536–711

    Article  CAS  PubMed  Google Scholar 

  32. Jung S, Chen X (2018) Quantum dot-dye conjugates for biosensing, imaging, and therapy. Adv Healthc Mater 7:e1800252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Goldman ER, Anderson GP, Tran PT et al (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74:841–847

    Article  CAS  PubMed  Google Scholar 

  34. Pathak S, Davidson MC, Silva GA (2007) Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett 7:1839–1845

    Article  CAS  PubMed  Google Scholar 

  35. Ding SY, Rumbles G, Jones M et al (2004) Bioconjugation of (CdSe)ZnS quantum dots using a genetically engineered multiple polyhistidine tagged cohesin/dockerin protein polymer. Macromol Mater Eng 289:622–628

    Article  CAS  Google Scholar 

  36. Mamedova N, Kotov N, Rogach A et al (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286

    Article  CAS  Google Scholar 

  37. Shan YM, Wang LP, Shi YH et al (2008) NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling. Talanta 75:1008–1014

    Article  CAS  PubMed  Google Scholar 

  38. Dwarakanath S, Bruno JG, Shastry A et al (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Biophys Res Commun 325:739–743

    Article  CAS  PubMed  Google Scholar 

  39. Singh RD, Shandilya R, Bhargava A et al (2018) Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation. Front Genet 9:616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ipe BI, Shukla A, Lu HC et al (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. Chemphyschem 7:1112–1118

    Article  CAS  PubMed  Google Scholar 

  41. Ji XJ, Zheng JY, Xu JM et al (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799

    Article  CAS  PubMed  Google Scholar 

  42. Nsibande SA, Forbes PB (2016) Fluorescence detection of pesticides using quantum dot materials - a review. Anal Chim Acta 945:9–22

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Govorov AO, Dulka J et al (2004) Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett 4:2323–2330

    Article  CAS  Google Scholar 

  44. Pereira M, Lai EPC, Hollebone B (2007) Characterization of quantum dots using capillary zone electrophoresis. Electrophoresis 28:2874–2881

    Article  CAS  PubMed  Google Scholar 

  45. Hermanson GT (1996) Bioconjugation techniques. Academic, San Diego, CA

    Google Scholar 

  46. Kleparnik K, Voracova I, Liskova M et al (2011) Capillary electrophoresis immunoassays with conjugated quantum dots. Electrophoresis 32:1217–1223

    Article  CAS  PubMed  Google Scholar 

  47. Liskova M, Voracova I, Kleparnik K et al (2011) Conjugation reactions in the preparations of quantum dot-based immunoluminescent probes for analysis of proteins by capillary electrophoresis. Anal Bioanal Chem 400:369–379

    Article  CAS  PubMed  Google Scholar 

  48. Pyell U (2010) Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 31:814–831

    Article  CAS  PubMed  Google Scholar 

  49. Song X, Li L, Qian H et al (2006) Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis 27:1341–1346

    Article  CAS  PubMed  Google Scholar 

  50. Wang JJ, Huang XY, Zan F et al (2012) Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy. Electrophoresis 33:1987–1995

    Article  CAS  PubMed  Google Scholar 

  51. Nazzal AY, Wang XY, Qu LH et al (2004) Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films. J Phys Chem B 108:5507–5515

    Article  CAS  Google Scholar 

  52. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  PubMed  Google Scholar 

  53. Modlitbova P, Novotny K, Porizka P et al (2018) Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicol Environ Saf 147:334–341

    Article  CAS  PubMed  Google Scholar 

  54. Rocha TL, Mestre NC, Saboia-Morais SM et al (2017) Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 98:1–17

    Article  CAS  PubMed  Google Scholar 

  55. Mattoussi H, Mauro JM, Goldman ER et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  56. Yang X, Zhang Y (2004) Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles. Langmuir 20:6071–6073

    Article  CAS  PubMed  Google Scholar 

  57. Jing LH, Yang CH, Qiao RR et al (2010) Highly fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method. Chem Mater 22:420–427

    Article  CAS  Google Scholar 

  58. Yang YH, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17:2354–2357

    Article  CAS  Google Scholar 

  59. Qu W, Zuo W, Li N et al (2017) Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. J Drug Target 25:661–672

    Article  CAS  PubMed  Google Scholar 

  60. Kleparnik K, Bocek P (2010) Electrophoresis today and tomorrow: helping biologists’ dreams come true. BioEssays 32:218–226

    Article  CAS  PubMed  Google Scholar 

  61. Heegaard NHH, Kennedy RT (2002) Antigen-antibody interactions in capillary electrophoresis. J Chromatogr B Anal Technol Biomed Life Sci 768:93–103

    Article  CAS  Google Scholar 

  62. Schultz NM, Kennedy RT (1993) Rapid immunoassays using capillary electrophoresis with fluorescence detection. Anal Chem 65:3161–3165

    Article  CAS  Google Scholar 

  63. Schmalzing D, Buonocore S, Piggee C (2000) Capillary electrophoresis-based immunoassays. Electrophoresis 21:3919–3930

    Article  CAS  PubMed  Google Scholar 

  64. Yang WC, Schmerr MJ, Jackman R et al (2005) Capillary electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein a as a fluorescent probe. Anal Chem 77:4489–4494

    Article  CAS  PubMed  Google Scholar 

  65. Shimura K, Karger BL (1994) Affinity probe capillary electrophoresis - analysis of recombinant human growth-hormone with a fluorescent-labeled antibody fragment. Anal Chem 66:9–15

    Article  CAS  PubMed  Google Scholar 

  66. Pereira M, Lai E (2008) Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay. J Nanobiotechnol 6:10

    Article  CAS  Google Scholar 

  67. Kleparnik K, Garner M, Bocek P (1995) Injection bias of DNA fragments in capillary electrophoresis with sieving. J Chromatogr A 698:375–383

    Article  CAS  PubMed  Google Scholar 

  68. Vicente G, Colon LA (2008) Separation of bioconjugated quantum dots using capillary electrophoresis. Anal Chem 80:1988–1994

    Article  CAS  PubMed  Google Scholar 

  69. Song XT, Li L, Chan HF et al (2006) Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis 27:1341–1346

    Article  CAS  PubMed  Google Scholar 

  70. Rogach AL, Katsikas L, Kornowski A et al (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Phys Chem Chem Phys 100:1772–1778

    CAS  Google Scholar 

  71. Klayman DL, Griffin TS (1973) Reaction of selenium with sodium-borohydride in protic solvents - facile method for introduction of selenium into organic molecules. J Am Chem Soc 95:197–200

    Article  CAS  Google Scholar 

  72. Wolcott A, Gerion D, Visconte M et al (2006) Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J Phys Chem B 110:5779–5789

    Article  CAS  PubMed  Google Scholar 

  73. Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Int Ed 43:5393–5396

    Article  CAS  Google Scholar 

  74. Modlitbova P, Kleparnik K, Farka Z et al (2018) Time-dependent growth of silica shells on CdTe quantum dots. Nanomaterials (Basel) 8:1–9

    Article  CAS  Google Scholar 

  75. Correa-Duarte MA, Giersig M, Liz-Marzan LM (1998) Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett 286:497–501

    Article  CAS  Google Scholar 

  76. He Y, Lu HT, Sai LM et al (2008) Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater 20:3416–3421

    Article  CAS  Google Scholar 

  77. Su YY, He Y, Lu HT et al (2009) The cytotoxicity of cadmium based, aqueous phase - synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25

    Article  CAS  PubMed  Google Scholar 

  78. Foret F, Krivankova L, Bocek P (1993) Capillary zone electrophoreis. Weinheim, Verlag Chemie

    Google Scholar 

  79. Lees EE, Gunzburg MJ, Nguyen T-L et al (2008) Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Lett 8:2883

    Article  CAS  PubMed  Google Scholar 

  80. Kleparnik K, Bocek P (1991) Theoretical background for clinical and biomedical applications of electromigration techniques. J Chromatogr Biomed 569:3–42

    Article  CAS  Google Scholar 

  81. Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239:587–590

    Article  CAS  PubMed  Google Scholar 

  82. Forster T (1946) Energiewanderung Und Fluoreszenz. Naturwissenschaften 33:166–175

    Article  CAS  Google Scholar 

  83. Datinska V, Kleparnik K, Belsanova B et al (2018) Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Forster resonance energy transfer. J Sep Sci 41:2961–2968

    Article  CAS  Google Scholar 

  84. Heegaard NHH (2009) Affinity in electrophoresis. Electrophoresis 30:S229–S239

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Grant Agency of the Czech Republic, grant number 17-01995s, at the Institute of Analytical Chemistry CAS and by Ministry of Education, Youth and Sports of the Czech Republic, the project CEITEC 2020 (LQ1601), at the Central European Institute of Technology, Brno University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Klepárník .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klepárník, K., Modlitbová, P. (2020). Preparation and Analysis of Quantum Dots: Applications of Capillary Electrophoresis. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics