Skip to main content

Methods and Applications of Expressed Protein Ligation

  • Protocol
  • First Online:
Expressed Protein Ligation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2133))

Abstract

Expressed protein ligation is a method of protein semisynthesis and typically involves the reaction of recombinant protein C-terminal thioesters with N-cysteine containing synthetic peptides in a chemoselective ligation. The recombinant protein C-terminal thioesters are produced by exploiting the action of nature’s inteins which are protein modules that catalyze protein splicing. This chapter discusses the basic principles of expressed protein ligation and recent advances and applications in this protein semisynthesis field. Comparative strengths and weaknesses of the method and future challenges are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kent SBH (2019) Novel protein science enabled by total chemical synthesis. Protein Sci 28:313–328. https://doi.org/10.1002/pro.3533

    Article  CAS  PubMed  Google Scholar 

  2. Fersht AR, Winter GP (1985) Redesigning enzymes by site-directed mutagenesis. Ciba Found Symp 111:204–218

    CAS  PubMed  Google Scholar 

  3. Xiao H, Schultz PG (2016) At the Interface of chemical and biological synthesis : an expanded genetic code. Cold Spring Harb Perspect Biol 8:a023945

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776

    Article  CAS  PubMed  Google Scholar 

  5. Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  CAS  PubMed  Google Scholar 

  6. Wieland T, Bokelmann E, Bauer L et al (1953) Über Peptidsynthesen. 8. Mitteilung Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Justus Liebigs Ann Chem 583:129–149

    Article  CAS  Google Scholar 

  7. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710. https://doi.org/10.1073/pnas.95.12.6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perler FB, Davis EO, Dean GE et al (1994) Protein splicing elements: inteins and exteins- a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mills KV, Lew BM, Jiang S -q, Paulus H (1998) Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A 95:3543–3548. https://doi.org/10.1073/pnas.95.7.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vila-Perelló M, Liu Z, Shah NH et al (2013) Streamlined expressed protein ligation using split inteins. J Am Chem Soc 135:286–292. https://doi.org/10.1021/ja309126m

    Article  CAS  PubMed  Google Scholar 

  11. David Y, Vila-Perelló M, Verma S, Muir TW (2015) Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat Chem 7:394–402. https://doi.org/10.1038/nchem.2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stevens AJ, Brown ZZ, Shah NH et al (2016) Design of a split intein with exceptional protein splicing activity. J Am Chem Soc 138:2162–2165. https://doi.org/10.1021/jacs.5b13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stevens AJ, Sekar G, Mostafavi AZ et al (2017) A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A 114:8538–8543. https://doi.org/10.1073/pnas.1701083114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mootz HD, Muir TW (2002) Protein splicing triggered by a small molecule. J Am Chem Soc 124:9044–9045. https://doi.org/10.1021/ja026769o

    Article  CAS  PubMed  Google Scholar 

  15. Di Ventura B, Mootz HD (2018) Switchable inteins for conditional protein splicing. Biol Chem 400:467–475. https://doi.org/10.1515/hsz-2018-0309

    Article  CAS  Google Scholar 

  16. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed Engl 47:6851–6855. https://doi.org/10.1002/anie.200705471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng JS, Tang S, Huang YC, Liu L (2013) Development of new thioester equivalents for protein chemical synthesis. Acc Chem Res 46:2475–2484. https://doi.org/10.1021/ar400012w

    Article  CAS  PubMed  Google Scholar 

  18. Evans TC, Benner J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264. https://doi.org/10.1002/pro.5560071103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed Engl 47:10030–10074. https://doi.org/10.1002/anie.200801313

    Article  CAS  PubMed  Google Scholar 

  20. Simon MD, Chu F, Racki LR et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128(5):12–1003. https://doi.org/10.1016/j.cell.2006.12.041

    Article  CAS  Google Scholar 

  21. Wu M, Hayward D, Kalin JH et al (2018) Lysine-14 acetylation of histone H3 in chromatin confers resistance to the deacetylase and demethylase activities of an epigenetic silencing complex. Elife 7:e37231. https://doi.org/10.7554/eLife.37231

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang ZA, Kurra Y, Wang X et al (2017) A versatile approach for site-specific lysine acylation in proteins. Angew Chem Int Ed Engl 56:1643–1647. https://doi.org/10.1002/anie.201611415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siman P, Karthikeyan SV, Nikolov M et al (2013) Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew Chemie Int Ed 52:8059–8063. https://doi.org/10.1002/anie.201303844

    Article  CAS  Google Scholar 

  24. McGinty RK, Köhn M, Chatterjee C et al (2009) Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS Chem Biol 4:958–968. https://doi.org/10.1021/cb9002255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang R, Holbert MA, Tarrant MK et al (2010) Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc 132:9986–9987. https://doi.org/10.1021/ja103954u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740. https://doi.org/10.1038/ncomms5740

    Article  CAS  PubMed  Google Scholar 

  27. Wang ZA, Liu WR (2017) Proteins with site-specific lysine methylation. Chemistry 23(49):11732–11737. https://doi.org/10.1002/chem.201701655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhat S, Hwang Y, Gibson MD et al (2018) Hydrazide mimics for protein lysine acylation to assess nucleosome dynamics and Deubiquitinase action. J Am Chem Soc 140:9478–9485. https://doi.org/10.1021/jacs.8b03572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai S, Tharp JM, Zeng Y et al (2016) A genetically encoded allysine for the synthesis of proteins with site-specific lysine dimethylation. Angew Chemie Int Ed 56:212–216. https://doi.org/10.1002/anie.201609452

    Article  CAS  Google Scholar 

  30. Chalker JM, Bernardes GJL, Davis BG (2011) A “tag-and-modify” approach to site-selective protein modification. Acc Chem Res 44(9):730–741. https://doi.org/10.1021/ar200056q

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen GKT, Qiu Y, Cao Y et al (2016) Butelase-mediated cyclization and ligation of peptides and proteins. Nat Protoc 11:1977–1988. https://doi.org/10.1038/nprot.2016.118

    Article  CAS  PubMed  Google Scholar 

  32. Henager SH, Chu N, Chen Z et al (2016) Enzyme-catalyzed expressed protein ligation. Nat Methods 13:925–927. https://doi.org/10.1038/nmeth.4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rachel NM, Toulouse JL, Pelletier JN (2017) Transglutaminase-catalyzed bioconjugation using one-pot metal-free bioorthogonal chemistry. Bioconjug Chem 28:2518–2523. https://doi.org/10.1021/acs.bioconjchem.7b00509

    Article  CAS  PubMed  Google Scholar 

  34. Uttamapinant C, White KA, Baruah H et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 107:10914–10919. https://doi.org/10.1073/pnas.0914067107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rush JS, Bertozzi CR (2008) New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J Am Chem Soc 130:12240–12241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fottner M, Brunner A-D, Bittl V et al (2019) Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat Chem Biol 15:276–284. https://doi.org/10.1038/s41589-019-0227-4

    Article  CAS  PubMed  Google Scholar 

  37. Chen Z, Cole PA (2015) Synthetic approaches to protein phosphorylation. Curr Opin Chem Biol 28:115–122. https://doi.org/10.1016/j.cbpa.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu J-W, Hu M, Chai J et al (2001) Crystal structure of a phosphorylated Smad2: recognition of Phosphoserine by the MH2 domain and insights on Smad function in TGF-signaling involved in a ligand-specific signaling pathway; and the inhibitory Smads (I-Smads), including Smad6 and-7, which ne. Mol Cell 8:1277–1289

    Article  CAS  PubMed  Google Scholar 

  39. Qin BY, Lam SS, Correia JJ, Lin K (2002) Smad3 allostery links TGF-β receptor kinase activation to transcriptional control. Genes Dev 16:1950–1963. https://doi.org/10.1101/gad.1002002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bolduc D, Rahdar M, Tu-Sekine B et al (2013) Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Elife 2013:1–19. https://doi.org/10.7554/eLife.00691

    Article  Google Scholar 

  41. Chen Z, Thomas SN, Bolduc DM et al (2016) Enzymatic analysis of PTEN Ubiquitylation by WWP2 and NEDD4-1 E3 ligases. Biochemistry 55:3658–3666. https://doi.org/10.1021/acs.biochem.6b00448

    Article  CAS  PubMed  Google Scholar 

  42. Chen Z, Dempsey DR, Thomas SN et al (2016) Molecular features of phosphatase and tensin homolog (PTEN) regulation by C-terminal phosphorylation. J Biol Chem 291:14160–14169. https://doi.org/10.1074/jbc.M116.728980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dempsey DR, Cole PA (2018) Protein chemical approaches to understanding PTEN lipid phosphatase regulation. Methods Enzymol 607:405–422. https://doi.org/10.1016/bs.mie.2018.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chu N, Salguero AL, Liu AZ et al (2018) Akt kinase activation mechanisms revealed using protein Semisynthesis. Cell 174:897–907. e14. https://doi.org/10.1016/j.cell.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haj-Yahya M, Lashuel HA (2018) Protein Semisynthesis provides access to tau disease-associated post-translational modifications (PTMs) and paves the way to deciphering the tau PTM code in health and diseased states. J Am Chem Soc 140:6611–6621. https://doi.org/10.1021/jacs.8b02668

    Article  CAS  PubMed  Google Scholar 

  46. Tarrant MK, Rho H-S, Xie Z et al (2012) Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat Chem Biol 8:262–269. https://doi.org/10.1038/nchembio.771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levinea PM, Galesica A, Balanaa AT et al (2019) α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proc Natl Acad Sci U S A 116:1511–1519. https://doi.org/10.1073/pnas.1808845116

    Article  CAS  Google Scholar 

  48. Rak A, Pylypenko O, Durek T et al (2003) Structure of Rab GDP-dissociation inhibitor in complex with Prenylated YPT1 GTPase. Science 302:646–650

    Article  CAS  PubMed  Google Scholar 

  49. Kim J, Guermah M, McGinty RK et al (2009) RAD6-mediated transcription-coupled H2B Ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137:459–471. https://doi.org/10.1016/j.cell.2009.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Worden EJ, Hoffmann NA, Hicks CW, Wolberger C (2019) Mechanism of cross-talk between H2B Ubiquitination and H3 methylation by Dot1L. Cell 176:1490–1501. e12. https://doi.org/10.1016/j.cell.2019.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438. https://doi.org/10.1038/nmeth886

    Article  CAS  PubMed  Google Scholar 

  52. Muralidharan V, Cho J, Trester-Zedlitz M et al (2004) Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J Am Chem Soc 126:14004–14012. https://doi.org/10.1021/ja0466199

    Article  CAS  PubMed  Google Scholar 

  53. Dempsey DR, Jiang H, Kalin JH et al (2018) Site-specific protein labeling with N-Hydroxysuccinimide-esters and the analysis of ubiquitin ligase mechanisms. J Am Chem Soc 140:9374–9378. https://doi.org/10.1021/jacs.8b05098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci U S A 101:6397–6402. https://doi.org/10.1073/pnas.0306616101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uegaki K, Oda N, Nakamura H et al (1998) Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc 120:5591–5592. https://doi.org/10.1021/ja980776o

    Article  Google Scholar 

  56. Nabeshima Y, Mizuguchi M, Kajiyama A, Okazawa H (2014) Segmental isotope-labeling of the intrinsically disordered protein PQBP1. FEBS Lett 588:4583–4589. https://doi.org/10.1016/j.febslet.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  57. Flynn JD, Jiang Z, Lee JC (2018) Segmental 13C-labeling and Raman microspectroscopy of α-Synuclein amyloid formation. Angew Chem Int Ed Engl 57:17069–17072. https://doi.org/10.1002/anie.201809865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chiang MJ, Holbert MA, Kalin JH et al (2014) An Fc domain protein-small molecule conjugate as an enhanced immunomodulator. J Am Chem Soc 136:3370–3373. https://doi.org/10.1021/ja5006674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flavell RR, Muir TW (2009) Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc Chem Res 42:107–116. https://doi.org/10.1002/chin.200918258

    Article  CAS  PubMed  Google Scholar 

  60. Leibly DJ, Nguyen TN, Kao LT et al (2012) Stabilizing additives added during cell Lysis aid in the solubilization of recombinant proteins. PLoS One 7:e52482. https://doi.org/10.1371/journal.pone.0052482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Topilina NI, Mills KV (2014) Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 5:1–14. https://doi.org/10.1186/1759-8753-5-5

    Article  CAS  Google Scholar 

  62. Bode JW (2017) Chemical protein synthesis with the α-Ketoacid-hydroxylamine ligation. Acc Chem Res 50:2104–2115. https://doi.org/10.1021/acs.accounts.7b00277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the NIH (GM62437 and CA74305) and the Leukemia and Lymphoma Society for financial support. We are grateful to Cole lab members, past and present, for their intellectual and experimental efforts that contributed to some of the work described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Z.A., Cole, P.A. (2020). Methods and Applications of Expressed Protein Ligation. In: Vila-Perelló, M. (eds) Expressed Protein Ligation. Methods in Molecular Biology, vol 2133. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0434-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0434-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0433-5

  • Online ISBN: 978-1-0716-0434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics