Skip to main content

Preparation of Fluorescent Recombinant Shiga Toxin B Subunit and Its Application to Flow Cytometry

  • Protocol
  • First Online:
Lectin Purification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2132))

Abstract

Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli (E. coli). Stx consists of one enzymatic A subunit and five B subunits (StxB) that are involved in binding. The StxB pentamer specifically recognizes a glycosphingolipid, globotriaosylceramide (Gb3), as a receptor; therefore, it can be used as a probe to detect Gb3. This chapter describes the preparation of recombinant Stx1B proteins using E. coli, their conjugation with fluorescent dyes, and their application for flow cytometry. The prepared fluorescent StxB proteins bound to cells of several lines, including the HeLa human cervix adenocarcinoma cell line and the THP-1 human monocytic leukemia cell line. Furthermore, the probe was useful for confirmation of several sphingolipid-deficient HeLa cell lines that were constructed using genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685

    Article  CAS  Google Scholar 

  2. Karmali MA, Steele BT, Petric M, Lim C (1983) Sporadic cases of hemolytic uremic syndrome associated with fecal cytotoxin and cytotoxin-producing Escherichia coli. Lancet 1:619–620

    Article  CAS  Google Scholar 

  3. O’Brien AD, Holmes RK (1987) Shiga and Shiga-like toxins. Microbiol Rev 51:206–220

    Article  Google Scholar 

  4. Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11:450–479

    Article  CAS  Google Scholar 

  5. Obrig TG, Moran TP, Colinas RJ (1985) Ribonuclease activity associated with the 60S ribosome-inactivating proteins ricin A, phytolaccin and Shiga toxin. Biochem Biophys Res Commun 130:879–884

    Article  CAS  Google Scholar 

  6. Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986) Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 163:1391–1404

    Article  CAS  Google Scholar 

  7. Lindberg AA, Brown JE, Strömberg N, Westling-Ryd M, Schultz JE, Karlsson KA (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785

    CAS  PubMed  Google Scholar 

  8. Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, Karmali M (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem 262:8834–8839

    CAS  PubMed  Google Scholar 

  9. Samuel JE, Perera LP, Ward S, O’Brien AD, Ginsburg V, Krivan HC (1990) Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect Immun 58:611–618

    Article  CAS  Google Scholar 

  10. Okuda T, Tokuda N, Numata S, Ito M, Ohta M, Kawamura K, Wiels J, Urano T, Tajima O, Furukawa K, Furukawa K (2006) Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281:10230–10235

    Article  CAS  Google Scholar 

  11. Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL, Read RJ (1998) Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37:1777–1788

    Article  CAS  Google Scholar 

  12. Holmgren J, Lönnroth I, Svennerholm L (1973) Fixation and inactivation of cholera toxin by GM1 ganglioside. Scand J Infect Dis 5:77–78

    Article  CAS  Google Scholar 

  13. Byres E, Paton AW, Paton JC, Löfling JC, Smith DF, Wilce MC, Talbot UM, Chong DC, Yu H, Huang S, Chen X, Varki NM, Varki A, Rossjohn J, Beddoe T (2008) Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456:648–652

    Article  CAS  Google Scholar 

  14. Baenziger J, Fiete D (1979) Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem 254:9795–9799

    CAS  PubMed  Google Scholar 

  15. Watanabe M, Matsuoka K, Kita E, Igai K, Higashi N, Miyagawa A, Watanabe T, Yanoshita R, Samejima Y, Terunuma D, Natori Y, Nishikawa K (2004) Oral therapeutic agents with highly clustered globotriose for treatment of Shiga toxigenic Escherichia coli infections. J Infect Dis 189:360–368

    Article  CAS  Google Scholar 

  16. Yamaji T, Nishikawa K, Hanada K (2010) Transmembrane BAX inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 biosynthesis. J Biol Chem 285:35505–35518

    Article  CAS  Google Scholar 

  17. Yamaji T, Hanada K (2014) Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs. PLoS One 9:e88124

    Article  Google Scholar 

  18. Yamaji T, Sekizuka T, Tachida Y, Sakuma C, Morimoto K, Kuroda M, Hanada K (2019) A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors. iScience 11:409–424

    Article  CAS  Google Scholar 

  19. Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, Furukawa K, Furukawa K, Boland S, Shaffer SA, Adam RM, Dong M (2018) Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 16:e2006951

    Article  Google Scholar 

  20. Pacheco AR, Lazarus JE, Sit B, Schmieder S, Lencer WI, Blondel CJ, Doench JG, Davis BM, Waldor MK (2018) CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infection. MBio 9:e01003–e01018

    Article  CAS  Google Scholar 

  21. Yamaji T, Hanada K (2015) Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 16:101–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AMED (No. JP19ae0101068j0104, 19fm0208005j0103) and JSPS KAKENHI (No. JP17K07357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yamaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamaji, T. (2020). Preparation of Fluorescent Recombinant Shiga Toxin B Subunit and Its Application to Flow Cytometry. In: Hirabayashi, J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0430-4_45

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0429-8

  • Online ISBN: 978-1-0716-0430-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics