Skip to main content

Optical Imaging Probes for Amyloid Diseases in Brain

  • Protocol
  • First Online:
Book cover Neurohistology and Imaging Techniques

Part of the book series: Neuromethods ((NM,volume 153))

Abstract

As amyloid fibril accumulation currently represents the key pathological evidence for a number of neurodegenerative disorders, a range of optical imaging probes have been developed in the past to visualize these infectious proteins. To some extent, they make it possible to characterize neuronal diseases in a postmortem state, that is, on sections of patients’ brains. However, many of the probes are of limited use for in vivo brain imaging, due to the lack of blood–brain barrier permeability and absorption/scattering of weak fluorescence signals deep in the neural tissue. Recently developed probes with significantly improved imaging properties partly amend such problems. These include near-infrared, two-photon, and phosphorescent imaging probes, as well as those selective for certain amyloid types, and for detecting enzymatic activity linked to the amyloid disease progression. Obviously, this has important medical implications, as a disease can be more reliably diagnosed and its progress detected at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

Amyloid beta

BBB:

Blood–brain barrier

CR:

Congo red

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

PET:

Positron emission tomography

PiB:

Pittsburgh compound B

ThS/ThT:

Thioflavin S/T

References

  1. Sloane PD, Zimmerman S, Suchindran C, Reed P, Wang L, Boustani M, Sudha S (2002) The public health impact of Alzheimer’s disease, 2000-2050: potential implication of treatment advances. Annu Rev Public Health 23:213–231. https://doi.org/10.1146/annurev.publhealth.23.100901.140525

    Article  PubMed  Google Scholar 

  2. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203. https://doi.org/10.1016/j.cell.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558. https://doi.org/10.1016/S0092-8674(00)80514-0

    Article  CAS  PubMed  Google Scholar 

  4. Chow VW, Mattson MP, Wong PC, Gleichmann M (2009) An overview of APP processing enzymes and products. NeuroMolecular Med 12:1–12. https://doi.org/10.1007/s12017-009-8104-z

    Article  CAS  Google Scholar 

  5. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P (2004) Alpha-synuclein and Parkinson’s disease. FASEB J 18:617–626. https://doi.org/10.1096/fj.03-0338rev

    Article  CAS  PubMed  Google Scholar 

  6. Glatzel M, Abela E, Maissen M, Aguzzi A (2003) Extraneural pathologic prion protein in sporadic Creutzfeldt-Jakob disease. New Engl J Med 349:1812–1820. https://doi.org/10.1056/NEJMoa030351

    Article  CAS  PubMed  Google Scholar 

  7. Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9(Suppl.3):151–153

    Article  CAS  PubMed  Google Scholar 

  8. Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc 46:24–29. https://doi.org/10.5946/ce.2013.46.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJH, Sibata CH (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–42. https://doi.org/10.1016/S1572-1000(04)00007-9

    Article  CAS  Google Scholar 

  10. Ono M, Saji H (2015) Recent advances in molecular imaging probes for β-amyloid plaques. Med Chem Commun 6(3):391–402. https://doi.org/10.1039/c4md00365a

    Article  CAS  Google Scholar 

  11. Fu H, Cui M (2018) Fluorescent imaging of amyloid-β deposits in brain: an overview of probe development and a highlight of the applications for in vivo imaging. Curr Med Chem 25(23):2736–2759. https://doi.org/10.2174/0929867325666180214110024

    Article  CAS  PubMed  Google Scholar 

  12. Verwilst P, Kim HS, Kim S, Kang C, Kim JS (2018) Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores. Chem Soc Rev 47(7):2249–2265. https://doi.org/10.1039/c7cs00706j

    Article  CAS  PubMed  Google Scholar 

  13. Xu MM, Ren WM, Tang XC, Hu YH, Zhang HY (2018) Advances in development of fluorescent probes for detecting amyloid-beta aggregates. Acta Pharmacol Sin 37(6):719–730. https://doi.org/10.1038/aps.2015.155

    Article  CAS  Google Scholar 

  14. Peng C, Wang X, Li Y, Li H-W, Wong MS (2019) Versatile fluorescent probes for near-infrared imaging of amyloid-b species in Alzheimer’s disease mouse model. J Mater Chem B 7(12):1986–1995. https://doi.org/10.1039/c9tb00161a

    Article  CAS  PubMed  Google Scholar 

  15. Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53:135–160. https://doi.org/10.1016/j.brainresrev.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  16. Marcus A, Sadimin E, Richardson M, Goodell L, Fyfe B (2012) Fluorescence microscopy is superior to polarized microscopy for detecting amyloid deposits in Congo red-stained trephine bone marrow biopsy specimens. Am J Clin Pathol 138:590–593. https://doi.org/10.1309/AJCP6HZI5DDQTCRM

    Article  PubMed  Google Scholar 

  17. Howie AJ, Brewer DB (2009) Optical properties of amyloid stained by Congo red: history and mechanisms. Micron 40:285–301. https://doi.org/10.1016/j.micron.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  18. Styren SD, Hamilton RL, Styren GC, Klunk WE (2000) X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem 48:1223–1232. https://doi.org/10.1177/002215540004800906

    Article  CAS  PubMed  Google Scholar 

  19. Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24:415–420. https://doi.org/10.1016/S0197-4580(02)00225-7

    Article  CAS  PubMed  Google Scholar 

  20. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238. https://doi.org/10.1016/j.jsb.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  21. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319. https://doi.org/10.1002/ana.20009

    Article  CAS  PubMed  Google Scholar 

  22. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. https://doi.org/10.1038/nature06917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H (2014) Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc 136:3388–3394. https://doi.org/10.1021/ja4052922

    Article  CAS  PubMed  Google Scholar 

  24. Nesterov EE, Skoch J, Hyman BT, Klunk WE, Bacskai BJ, Swager TM (2005) In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew Chem Int Ed 44:5452–5456. https://doi.org/10.1002/anie.200500845

    Article  CAS  Google Scholar 

  25. Li Q, Lee J-S, Ha C, Park CB, Yang G, Gan WB, Chang Y-T (2004) Solid-phase synthesis of styryl dyes and their application as amyloid sensors. Angew Chem Int Ed 43:6331–6335. https://doi.org/10.1002/anie.200461600

    Article  CAS  Google Scholar 

  26. Ran C, Xu X, Raymond SB et al (2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131(42):15257–15261. https://doi.org/10.1021/ja9047043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim H, Im YH, Ahn J et al (2019) Synthesis and in vivo characterization of 18F-labeled difluoroboron-curcumin derivative for β-amyloid plaque imaging. Sci Rep 9(1):6747. https://doi.org/10.1038/s41598-019-43257-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung C, Srikun D, Lim CS, Chang CJ, Cho BR (2011) A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue. Chem Commun (Camb) 47:9618–9620. https://doi.org/10.1039/c1cc13583j

    Article  CAS  Google Scholar 

  29. Heo CH, Kim KH, Kim HJ, Baik SH, Song H, Kim YS, Lee J, Mook-Jung I, Kim HM (2013) A two-photon fluorescent probe for amyloid-β plaques in living mice. Chem Commun (Camb) 49:1303–1305. https://doi.org/10.1039/c2cc38570h

    Article  CAS  Google Scholar 

  30. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. https://doi.org/10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  31. Cook NP, Torres V, Jain D, Martí AA (2011) Sensing amyloid-β aggregation using luminescent dipyridophenazine ruthenium(II) complexes. J Am Chem Soc 133:11121–11123. https://doi.org/10.1021/ja204656r

    Article  CAS  PubMed  Google Scholar 

  32. Murphy CJ, Barton JK (1993) Ruthenium complexes as luminescent reporters of DNA. Methods Enzymol 226:576–594. https://doi.org/10.1016/0076-6879(93)26027-7

    Article  CAS  PubMed  Google Scholar 

  33. Jiménez-Hernández ME, Orellana G, Montero F, Portolés MT (2000) A ruthenium probe for cell viability measurement using flow cytometry, confocal microscopy and time-resolved luminescence. Photochem Photobiol 72:28–34. https://doi.org/10.1562/0031-8655(2000)072<0028:ARPFCV>2.0.CO;2

    Article  PubMed  Google Scholar 

  34. Cook NP, Ozbil M, Katsampes C, Prabhakar R, Martí AA (2013) Unraveling the photoluminescence response of light-switching ruthenium(II) complexes bound to amyloid-β. J Am Chem Soc 135:10810–10816. https://doi.org/10.1021/ja404850u

    Article  CAS  PubMed  Google Scholar 

  35. Lewis GN, Kasha M (1944) Phosphorescence and the triplet state. J Am Chem Soc 66:2100–2116. https://doi.org/10.1021/ja01240a030

    Article  CAS  Google Scholar 

  36. Hudson SA, Ecroyd H, Kee TW, Carver JA (2009) The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 276:5960–5972. https://doi.org/10.1111/j.1742-4658.2009.07307.x

    Article  CAS  PubMed  Google Scholar 

  37. Cook NP, Kilpatrick K, Segatori L, Martí AA (2012) Detection of α-synuclein amyloidogenic aggregates in vitro and in cells using light-switching dipyridophenazine ruthenium(II) complexes. J Am Chem Soc 134:20776–20782. https://doi.org/10.1021/ja3100287

    Article  CAS  PubMed  Google Scholar 

  38. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276:22715–22721. https://doi.org/10.1074/jbc.M011499200

    Article  CAS  PubMed  Google Scholar 

  39. Cao K, Farahi M, Dakanali M, Chang WM, Sigurdson CJ, Theodorakis EA, Yang J (2012) Aminonaphthalene 2-cyanoacrylate (ANCA) probes fluorescently discriminate between amyloid-β and prion plaques in brain. J Am Chem Soc 134:17338–17341. https://doi.org/10.1021/ja3063698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta Mol basis Dis 1739:216–223. https://doi.org/10.1016/j.bbadis.2004.08.014

    Article  CAS  Google Scholar 

  41. Ojida A, Sakamoto T, Inoue M, Fujishima S, Lippens G, Hamachi I (2009) Fluorescent BODIPY-based Zn(II) complex as a molecular probe for selective detection of neurofibrillary tangles in the brains of Alzheimer’s disease patients. J Am Chem Soc 131:6543–6548. https://doi.org/10.1021/ja9008369

    Article  CAS  PubMed  Google Scholar 

  42. Ojida A, Mito-Oka Y, Sada K, Hamachi I (2004) Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. J Am Chem Soc 126:2454–2463. https://doi.org/10.1021/ja038277x

    Article  CAS  PubMed  Google Scholar 

  43. Vassar R (1999) Beta-secretase cleavage of alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741. https://doi.org/10.1126/science.286.5440.735

    Article  CAS  PubMed  Google Scholar 

  44. Ghosh A, Gemma S, Tang J (2008) β-Secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics 5:399–408. https://doi.org/10.1016/j.nurt.2008.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu J, Zhang Z, Yang J, Chu J, Li P, Zeng S, Luo Q (2007) Visualization of beta-secretase cleavage in living cells using a genetically encoded surface-displayed FRET probe. Biochem Biophys Res Commun 362:25–30. https://doi.org/10.1016/j.bbrc.2007.07.145

    Article  CAS  PubMed  Google Scholar 

  46. Folk DS, Torosian JC, Hwang S, McCafferty DG, Franz KJ (2012) Monitoring β­secretase activity in living cells with a membrane-anchored FRET probe. Angew Chem Int Ed 51:10795–10799. https://doi.org/10.1002/anie.201206673

    Article  CAS  Google Scholar 

  47. Kim S-I, Yi J-S, Ko Y-G (2006) Amyloid beta oligomerization is induced by brain lipid rafts. J Cell Biochem 99:878–889. https://doi.org/10.1002/jcb.20978

    Article  CAS  PubMed  Google Scholar 

  48. Du Yan S, Shi Y, Zhu a, Fu J, Zhu H, Zhu Y, Gibson L, Stern E, Collison K, Al-Mohanna F, Ogawa S, Roher a, Clarke SG, Stern DM (1999) Role of ERAB/L-3-Hydroxyacyl-coenzyme A dehydrogenase type II activity in Aβ-induced cytotoxicity. J Biol Chem 274:2145–2156. https://doi.org/10.1074/jbc.274.4.2145

    Article  CAS  PubMed  Google Scholar 

  49. He X-Y, Merz G, Mehta P, Schulz H, Yang S-Y (1999) Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme: Characterization of a novel 17-hydroxysteroid dehydrogenase. J Biol Chem 274:15014–15019. https://doi.org/10.1074/jbc.274.21.15014

    Article  CAS  PubMed  Google Scholar 

  50. Oppermann UCT, Salim S, Tjernberg LO, Terenius L, Jörnvall H (1999) Binding of amyloid β-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): Regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer’s disease. FEBS Lett 451:238–242. https://doi.org/10.1016/S0014-5793(99)00586-4

    Article  CAS  PubMed  Google Scholar 

  51. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452. https://doi.org/10.1126/science.1091230

    Article  CAS  PubMed  Google Scholar 

  52. Yan SD, Stern DM (2005) Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol 86:161–171. https://doi.org/10.1111/j.0959-9673.2005.00427.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Froemming MK, Sames D (2007) Harnessing functional plasticity of enzymes: a fluorogenic probe for imaging 17β-HSD10 dehydrogenase, an enzyme involved in Alzheimer’s and Parkinson's diseases. J Am Chem Soc 129:14518–14522. https://doi.org/10.1021/ja072601x

    Article  CAS  PubMed  Google Scholar 

  54. Muirhead KEA, Froemming M, Li X, Musilek K, Conway SJ, Sames D, Gunn-Moore FJ (2010) (−)-CHANA, a fluorogenic probe for detecting amyloid binding alcohol dehydrogenase HSD10 activity in living cells. ACS Chem Biol 5:1105–1114. https://doi.org/10.1021/cb100199m

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y-L, Fan C, Xin B et al (2018) AIE-based super-resolution imaging probes for β-amyloid plaques in mouse brains. Mater Chem Front 2(8):1554–1562. https://doi.org/10.1039/C8QM00209F

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF-2018K2A9A2A08000087, NRF-2019R1A2C3008463) and the Organelle Network Research Center (NRF-2017R1A5A1015366). HWR also acknowledges support from the KBRI basic research program through Korea Brain Research Institute funded by Ministry of Science and ICT (17-BR-01, 19-BR-04-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Woo Rhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mishra, P.K., Kang, MG., Rhee, HW. (2020). Optical Imaging Probes for Amyloid Diseases in Brain. In: Pelc, R., Walz, W., Doucette, J.R. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0428-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0428-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0426-7

  • Online ISBN: 978-1-0716-0428-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics