Skip to main content

Circadian Metabolomics from Breath

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2130))

Abstract

Metabolites like melatonin are essential in determining circadian phase. In the recent years, comprehensive metabolome analyses have unveiled entire panels of small biomolecules fluctuating in a circadian fashion, thus enabling a more precise determination of inner time and understanding of how circadian clock operates at the molecular level. Emerging analytical techniques allowing for the determination of exhaled metabolites in breath show promise to gain further insights noninvasively and in vivo into circadian metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sharma M, Palacios-Bois J, Schwartz G, Iskandar H, Thakur M, Quirion R, Nair NPV (1989) Circadian rhythms of melatonin and cortisol in aging. Biol Psychiatry 25(3):305–319. https://doi.org/10.1016/0006-3223(89)90178-9

    Article  CAS  PubMed  Google Scholar 

  2. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci U S A 109(7):2625–2629. https://doi.org/10.1073/pnas.1114410109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, Cui N, Middleton B, Ackermann K, Kayser M, Thumser AE, Raynaud FI, Skene DJ (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111(29):10761–10766

    Article  CAS  Google Scholar 

  4. Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S, Honma K, Mishima K, Soga T, Ueda HR (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 109(37):15036–15041. https://doi.org/10.1073/pnas.1207768109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S, Yasui A, van der Horst GTJ, Soga T, Ueda HR (2009) Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A 106(24):9890–9895. https://doi.org/10.1073/pnas.0900617106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jens H et al (2009) On-line breath analysis with PTR-TOF. J Breath Res 3(2):027004

    Article  Google Scholar 

  7. Španěl P, Smith D (2013) Chapter 4 - Recent SIFT-MS Studies of Volatile Compounds in Physiology, Medicine and Cell Biology. In: Amann A, Smith D (eds) Volatile Biomarkers. Elsevier, Boston, p 48–76

    Google Scholar 

  8. Martinez-Lozano Sinues P, Zenobi R, Kohler M (2013) Analysis of the exhalome: a diagnostic tool of the future. Chest 144(3):746–749. https://doi.org/10.1378/chest.13-1106

    Article  CAS  PubMed  Google Scholar 

  9. Zhu JJ, Bean HD, Jimenez-Diaz J, Hill JE (2013) Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. J Appl Physiol 114(11):1544–1549. https://doi.org/10.1152/japplphysiol.00099.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bean HD, Zhu J, Hill JE (2011) Characterizing bacterial volatiles using secondary electrospray ionization mass spectrometry (SESI-MS). J Vis Exp 52:e2664. https://doi.org/10.3791/2664

    Article  CAS  Google Scholar 

  11. Dillon LA, Stone VN, Croasdell LA, Fielden PR, Goddard NJ, Paul Thomas CL (2010) Optimisation of secondary electrospray ionisation (SESI) for the trace determination of gas-phase volatile organic compounds. Analyst 135(2):306–314

    Article  CAS  Google Scholar 

  12. Zhu J, Bean HD, Kuo YM, Hill JE (2010) Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J Clin Microbiol 48(12):4426–4431. https://doi.org/10.1128/JCM.00392-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA, Zenobi R, Dallmann R (2014) Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One 9(12):e114422. https://doi.org/10.1371/journal.pone.0114422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Lozano Sinues P, Fernandez de la Mora J (2015) Method to analyze and classify persons and organisms based on odor patterns from released vapors; US Patent No: US9121844 B1

    Google Scholar 

  15. Martinez-Lozano Sinues P, Fernandez de la Mora J (2010) Method for detecting volatile species of high molecular weight; US Patent No: US 20100264304 A1

    Google Scholar 

  16. López-Herrera J, Barrero A, Boucard A, Loscertales I, Márquez M (2004) An experimental study of the electrospraying of water in air at atmospheric pressure. J Am Soc Mass Spectrom 15(2):253–259. https://doi.org/10.1016/j.jasms.2003.10.018

    Article  CAS  PubMed  Google Scholar 

  17. Gaugg MT, Garcia Gomez D, Barrios Collado C, Vidal de Miguel G, Kohler M, Zenobi R, Martinez-Lozano Sinues P (2016) Expanding metabolite coverage of real-time breath analysis by coupling a universal secondary electrospray ionization source and high resolution mass spectrometry—a pilot study on tobacco smokers. J Breath Res 10(1):016010

    Article  Google Scholar 

  18. Keller BO, Sui J, Young AB, Whittal RM (2008) Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 627(1):71–81. https://doi.org/10.1016/j.aca.2008.04.043

    Article  CAS  PubMed  Google Scholar 

  19. García-Gómez D, Gaisl T, Bregy L, Cremonesi A, Sinues PM-L, Kohler M, Zenobi R (2016) Real-time quantification of amino acids in the Exhalome by secondary electrospray ionization–mass spectrometry: a proof-of-principle study. Clin Chem 62(9):1230–1237. https://doi.org/10.1373/clinchem.2016.256909

    Article  CAS  PubMed  Google Scholar 

  20. García-Gómez D, Martínez-Lozano Sinues P, Barrios-Collado C, Vidal-De-Miguel G, Gaugg M, Zenobi R (2015) Identification of 2-alkenals, 4-hydroxy-2-alkenals, and 4-hydroxy-2,6-alkadienals in exhaled breath condensate by UHPLC-HRMS and in breath by real-time HRMS. Anal Chem 87(5):3087–3093. https://doi.org/10.1021/ac504796p

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Sinues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, S.A., Sinues, P. (2021). Circadian Metabolomics from Breath. In: Brown, S.A. (eds) Circadian Clocks. Methods in Molecular Biology, vol 2130. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0381-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0381-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0380-2

  • Online ISBN: 978-1-0716-0381-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics