Skip to main content

Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

Abstract

NMR spectroscopy is a method of choice to characterize structure, function, and dynamics of integral membrane proteins at atomic resolution. Here, we describe protocols for sample preparation and characterization by NMR spectroscopy of two integral membrane proteins with different architecture, the α-helical membrane protein MsbA and the β-barrel membrane protein BamA. The protocols describe recombinant expression in E. coli, protein refolding, purification, and reconstitution in suitable membrane mimetics, as well as key setup steps for basic NMR experiments. These include experiments on protein samples in the solid state under magic angle spinning (MAS) conditions and experiments on protein samples in aqueous solution. Since MsbA and BamA are typical examples of their respective architectural classes, the protocols presented here can also serve as a reference for other integral membrane proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038. https://doi.org/10.1002/pro.5560070420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lundstrom K (2007) Structural genomics and drug discovery. J Cell Mol Med 11(2):224–238. https://doi.org/10.1111/j.1582-4934.2007.00028.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381(6580):335–341. https://doi.org/10.1038/381335a0

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann JB, Zahn M, Burmann IM, Bibow S, Hiller S (2018) Sequence-specific solution NMR assignments of the beta-barrel Insertase BamA to monitor its conformational Ensemble at the Atomic Level. J Am Chem Soc 140(36):11252–11260. https://doi.org/10.1021/jacs.8b03220

    Article  CAS  PubMed  Google Scholar 

  5. Sborgi L, Ravotti F, Dandey VP, Dick MS, Mazur A, Reckel S, Chami M, Scherer S, Huber M, Bockmann A, Egelman EH, Stahlberg H, Broz P, Meier BH, Hiller S (2015) Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proc Natl Acad Sci U S A 112(43):13237–13242. https://doi.org/10.1073/pnas.1507579112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C (2018) Unexplored nucleotide binding modes for the ABC exporter MsbA. J Am Chem Soc 140(43):14112–14125. https://doi.org/10.1021/jacs.8b06739

    Article  CAS  PubMed  Google Scholar 

  7. Wiegand T, Lacabanne D, Keller K, Cadalbert R, Lecoq L, Yulikov M, Terradot L, Jeschke G, Meier BH, Bockmann A (2017) Solid-state NMR and EPR spectroscopy of Mn(2+)-substituted ATP-fueled protein engines. Angew Chem Int Ed Engl 56(12):3369–3373. https://doi.org/10.1002/anie.201610551

    Article  CAS  PubMed  Google Scholar 

  8. Hellmich UA, Lyubenova S, Kaltenborn E, Doshi R, van Veen HW, Prisner TF, Glaubitz C (2012) Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy. J Am Chem Soc 134(13):5857–5862. https://doi.org/10.1021/ja211007t

    Article  CAS  PubMed  Google Scholar 

  9. Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci U S A 104(41):16140–16145. https://doi.org/10.1073/pnas.0705466104

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210. https://doi.org/10.1126/science.1161302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee M, Wang T, Makhlynets OV, Wu Y, Polizzi NF, Wu H, Gosavi PM, Stohr J, Korendovych IV, DeGrado WF, Hong M (2017) Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proc Natl Acad Sci U S A 114(24):6191–6196. https://doi.org/10.1073/pnas.1706179114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milikisiyants S, Wang S, Munro RA, Donohue M, Ward ME, Bolton D, Brown LS, Smirnova TI, Ladizhansky V, Smirnov AI (2017) Oligomeric structure of Anabaena sensory rhodopsin in a lipid bilayer environment by combining solid-state NMR and long-range DEER constraints. J Mol Biol 429(12):1903–1920. https://doi.org/10.1016/j.jmb.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  13. Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. Chembiochem 2(4):272–281

    Article  CAS  PubMed  Google Scholar 

  14. Karyolaimos A, Ampah-Korsah H, Zhang Z, de Gier JW (2018) Shaping Escherichia coli for recombinant membrane protein production. FEMS Microbiol Lett 365(15). https://doi.org/10.1093/femsle/fny152

  15. von Heijne G (1999) Recent advances in the understanding of membrane protein assembly and structure. Q Rev Biophys 32(4):285–307

    Article  Google Scholar 

  16. Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3(4):303–313. https://doi.org/10.1038/nmeth0406-303

    Article  CAS  PubMed  Google Scholar 

  17. Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610(1):37–45

    Article  CAS  PubMed  Google Scholar 

  18. Tamm LK, Hong H, Liang B (2004) Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 1666(1–2):250–263. https://doi.org/10.1016/j.bbamem.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  19. Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (2010) The 3D structures of VDAC represent a native conformation. Trends Biochem Sci 35(9):514–521. https://doi.org/10.1016/j.tibs.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20(4):471–479. https://doi.org/10.1016/j.sbi.2010.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanders CR 2nd, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34(12):4030–4040. https://doi.org/10.1021/bi00012a022

    Article  CAS  PubMed  Google Scholar 

  22. Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45(28):8453–8465. https://doi.org/10.1021/bi060615u

    Article  CAS  PubMed  Google Scholar 

  23. Brown LS, Ladizhansky V (2015) Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci 24(9):1333–1346. https://doi.org/10.1002/pro.2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808(8):1957–1974. https://doi.org/10.1016/j.bbamem.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  25. Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28(1):43–57. https://doi.org/10.1023/B:JNMR.0000012875.80898.8f

    Article  CAS  PubMed  Google Scholar 

  26. Mio K, Sato C (2018) Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev 10(2):307–316. https://doi.org/10.1007/s12551-017-0371-6

    Article  CAS  PubMed  Google Scholar 

  27. Mineev KS, Nadezhdin KD, Goncharuk SA, Arseniev AS (2016) Characterization of small isotropic Bicelles with various compositions. Langmuir 32(26):6624–6637. https://doi.org/10.1021/acs.langmuir.6b00867

    Article  CAS  PubMed  Google Scholar 

  28. Doerrler WT, Raetz CR (2002) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277(39):36697–36705. https://doi.org/10.1074/jbc.M205857200

    Article  CAS  PubMed  Google Scholar 

  29. Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549(7671):233–237. https://doi.org/10.1038/nature23649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid a and amphipathic drugs at different sites. Biochem J 419(2):317–328. https://doi.org/10.1042/BJ20081364

    Article  CAS  PubMed  Google Scholar 

  31. Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7(3):206–214. https://doi.org/10.1038/nrmicro2069

    Article  CAS  PubMed  Google Scholar 

  32. Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y (2016) Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23(3):192–196. https://doi.org/10.1038/nsmb.3181

    Article  CAS  PubMed  Google Scholar 

  33. Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ (2006) YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61(1):151–164. https://doi.org/10.1111/j.1365-2958.2006.05211.x

    Article  CAS  PubMed  Google Scholar 

  34. Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121(2):235–245. https://doi.org/10.1016/j.cell.2005.02.015

    Article  CAS  PubMed  Google Scholar 

  35. Wasylishen R, Fyfe C (1982) High-resolution NMR of solids. In: Annual reports on NMR spectroscopy, vol 12. Elsevier, Amsterdam, pp 1–290

    Chapter  Google Scholar 

  36. Dudley R, Fyfe C, Stephenson P, Deslandes Y, Hamer G, Marchessault RJJACS (1983) High-resolution carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105(8):2469–2472

    Article  CAS  Google Scholar 

  37. Duer MJ (2008) Solid state NMR spectroscopy: principles and applications. Wiley

    Google Scholar 

  38. Apperley DC, Harris RK, Hodgkinson P (2012) Solid-state NMR: basic principles and practice. Momentum Press

    Google Scholar 

  39. Schaefer J, Stejskal EO (1976) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc 98(4):1031–1032

    Article  CAS  Google Scholar 

  40. Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Bockmann A, Meier BH (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed Engl 53(45):12253–12256. https://doi.org/10.1002/anie.201405730

    Article  CAS  PubMed  Google Scholar 

  41. Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed Engl 45(23):3878–3881. https://doi.org/10.1002/anie.200600328

    Article  CAS  PubMed  Google Scholar 

  42. Ishii Y, Tycko R (2000) Sensitivity enhancement in solid state (15)N NMR by indirect detection with high-speed magic angle spinning. J Magn Reson 142(1):199–204. https://doi.org/10.1006/jmre.1999.1976

    Article  CAS  PubMed  Google Scholar 

  43. Ishii Y, Yesinowski JP, Tycko R (2001) Sensitivity enhancement in solid-state (13)C NMR of synthetic polymers and biopolymers by (1)H NMR detection with high-speed magic angle spinning. J Am Chem Soc 123(12):2921–2922. https://doi.org/10.1021/ja015505j

    Article  CAS  PubMed  Google Scholar 

  44. Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B (2011) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Engl 50(19):4508–4512. https://doi.org/10.1002/anie.201008244

    Article  CAS  PubMed  Google Scholar 

  45. Reif B, Griffin RG (2003) 1H detected 1H,15N correlation spectroscopy in rotating solids. J Magn Reson 160(1):78–83

    Article  CAS  PubMed  Google Scholar 

  46. Gopinath T, Mote KR, Veglia G (2013) Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. Prog Nucl Mag Res Sp 75:50–68. https://doi.org/10.1016/j.pnmrs.2013.07.004

    Article  CAS  Google Scholar 

  47. Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T (2015) Solid-state NMR methods for oriented membrane proteins. Prog Nucl Magn Reson Spectrosc 88-89:48–85. https://doi.org/10.1016/j.pnmrs.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  48. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783. https://doi.org/10.1038/nature11580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eddy MT, Ong TC, Clark L, Teijido O, van der Wel PC, Garces R, Wagner G, Rostovtseva TK, Griffin RG (2012) Lipid dynamics and protein-lipid interactions in 2D crystals formed with the beta-barrel integral membrane protein VDAC1. J Am Chem Soc 134(14):6375–6387. https://doi.org/10.1021/ja300347v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial (13)C and (15)N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. Chembiochem 8(4):434–442. https://doi.org/10.1002/cbic.200600484

    Article  CAS  PubMed  Google Scholar 

  51. Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump--structural insights. J Mol Biol 386(4):1078–1093. https://doi.org/10.1016/j.jmb.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  52. Retel JS, Nieuwkoop AJ, Hiller M, Higman VA, Barbet-Massin E, Stanek J, Andreas LB, Franks WT, van Rossum BJ, Vinothkumar KR, Handel L, de Palma GG, Bardiaux B, Pintacuda G, Emsley L, Kuhlbrandt W, Oschkinat H (2017) Structure of outer membrane protein G in lipid bilayers. Nat Commun 8:2073. https://doi.org/10.1038/s41467-017-02228-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lacabanne D, Kunert B, Gardiennet C, Meier BH, Bo Ckmann A (2017) Sample preparation for membrane protein structural studies by solid-state NMR. Methods Mol Biol 1635:345–358. https://doi.org/10.1007/978-1-4939-7151-0_19

    Article  CAS  PubMed  Google Scholar 

  54. Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133(43):17434–17443. https://doi.org/10.1021/ja207137h

    Article  CAS  PubMed  Google Scholar 

  55. Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46(48):13696–13703. https://doi.org/10.1021/bi701411g

    Article  CAS  PubMed  Google Scholar 

  56. Ladizhansky V (2017) Applications of solid-state NMR to membrane proteins. Biochim Biophys Acta Proteins Proteom 1865(11 Pt B):1577–1586. https://doi.org/10.1016/j.bbapap.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  57. Cross TA, Opella SJ (1994) Solid-state NMR structural studies of peptides and proteins in membranes. Curr Opin Struct Biol 4(4):574–581. https://doi.org/10.1016/S0959-440x(94)90220-8

    Article  CAS  Google Scholar 

  58. Rigaud JL, Levy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86. https://doi.org/10.1016/S0076-6879(03)72004-7

    Article  CAS  PubMed  Google Scholar 

  59. Rigaud JL, Pitard B, Levy D (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta 1231(3):223–246

    Article  PubMed  Google Scholar 

  60. Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3(2):256–266. https://doi.org/10.1038/nprot.2007.519

    Article  CAS  PubMed  Google Scholar 

  61. Morris GA, Freeman R (2011) Selective excitation in Fourier transform nuclear magnetic resonance. 1978. J Magn Reson 213(2):214–243. https://doi.org/10.1016/j.jmr.2011.08.031

    Article  CAS  PubMed  Google Scholar 

  62. Kolodziejski W, Klinowski J (2002) Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev 102(3):613–628

    Article  CAS  PubMed  Google Scholar 

  63. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590. https://doi.org/10.1063/1.1680061

    Article  CAS  Google Scholar 

  64. Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15(3–4):386–426. https://doi.org/10.1016/0031-8914(49)90114-7

    Article  CAS  Google Scholar 

  65. Petkova AT, Baldus M, Belenky M, Hong M, Griffin RG, Herzfeld J (2003) Backbone and side chain assignment strategies for multiply labeled membrane peptides and proteins in the solid state. J Magn Reson 160(1):1–12

    Article  CAS  PubMed  Google Scholar 

  66. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207. https://doi.org/10.1080/002689798166215

    Article  CAS  Google Scholar 

  67. Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637. https://doi.org/10.1016/S0009-2614(01)00791-6

    Article  CAS  Google Scholar 

  68. Takegoshi K, Nakamura S, Terao T (2003) C-13-H-1 dipolar-driven C-13-C-13 recoupling without C-13 rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118(5):2325–2341. https://doi.org/10.1063/1.1534105

    Article  CAS  Google Scholar 

  69. Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magnetic Reson 96(1):205–209. https://doi.org/10.1016/0022-2364(92)90305-Q

    Article  CAS  Google Scholar 

  70. Mcdowell LM, Klug CA, Studelska DR, Tasaki K, Beusen DD, Mckay RA, Schaefer J (1995) Applications of REDOR NMR-spectroscopy. J Cell Biochem:18–18

    Google Scholar 

  71. Michal CA, Jelinski LW (1997) REDOR 3D: Heteronuclear distance measurements in uniformly labeled and natural abundance solids. J Am Chem Soc 119(38):9059–9060. https://doi.org/10.1021/ja9711730

    Article  CAS  Google Scholar 

  72. Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. J Am Chem Soc 124(36):10728–10742. https://doi.org/10.1021/ja026385y

    Article  CAS  PubMed  Google Scholar 

  73. Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23(6):468–474. https://doi.org/10.1038/nsmb.3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94(23):12366–12371. https://doi.org/10.1073/pnas.94.23.12366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang AC, Grzesiek S, Tschudin R, Lodi PJ, Bax A (1995) Sequential backbone assignment of isotopically enriched proteins in D2O by deuterium-decoupled HA(CA)N and HA(CACO)N. J Biomol NMR 5(4):376–382

    Article  CAS  PubMed  Google Scholar 

  76. Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4(11):1245–1249

    Article  CAS  PubMed  Google Scholar 

  77. Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) Conformational change of H+-ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. J Am Chem Soc 126(50):16632–16638. https://doi.org/10.1021/ja045279o

    Article  CAS  PubMed  Google Scholar 

  78. Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH (2017) Application of solution NMR to structural studies on alpha-helical integral membrane proteins. Molecules 22(8). https://doi.org/10.3390/molecules22081347

  79. Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2004) Uniform and residue-specific 15N-labeling of proteins on a highly deuterated background. J Biomol NMR 29(3):289–297. https://doi.org/10.1023/B:JNMR.0000032523.00554.38

    Article  CAS  PubMed  Google Scholar 

  80. Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11(5):540–547

    Article  CAS  PubMed  Google Scholar 

  81. Fernandez C, Wuthrich K (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett 555(1):144–150. https://doi.org/10.1016/s0014-5793(03)01155-4

    Article  CAS  PubMed  Google Scholar 

  82. Riek R, Wider G, Pervushin K, Wuthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci U S A 96(9):4918–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matzapetakis M, Turano P, Theil EC, Bertini I (2007) 13C- 13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin. J Biomol NMR 38(3):237–242. https://doi.org/10.1007/s10858-007-9163-9

    Article  CAS  PubMed  Google Scholar 

  84. Wider G, Wuthrich K (1999) NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr Opin Struct Biol 9(5):594–601

    Article  CAS  PubMed  Google Scholar 

  85. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122. https://doi.org/10.1016/j.sbi.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  86. Huang R, Perez F, Kay LE (2017) Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proc Natl Acad Sci U S A 114(46):E9846–E9854. https://doi.org/10.1073/pnas.1712297114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grzesiek S, Bax A (1992) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114(16):6291–6293. https://doi.org/10.1021/ja00042a003

    Article  CAS  Google Scholar 

  88. Grzesiek S, Bax A (1993) Amino-acid type determination in the sequential assignment procedure of uniformly C-13/N-15-enriched proteins. J Biomol NMR 3(2):185–204

    Article  CAS  PubMed  Google Scholar 

  89. Kushlan DM, LeMaster DM (1993) Resolution and sensitivity enhancement of heteronuclear correlation for methylene resonances via 2H enrichment and decoupling. J Biomol NMR 3(6):701–708

    Article  CAS  PubMed  Google Scholar 

  90. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H-2 labeled proteins with high-sensitivity. J Am Chem Soc 116(26):11655–11666. https://doi.org/10.1021/ja00105a005

    Article  CAS  Google Scholar 

  91. Zhu G, Kong XM, Sze KH (1999) Gradient and sensitivity enhancement of 2D TROSY with water flip-back, 3D NOESY-TROSY and TOCSY-TROSY experiments. J Biomol NMR 13(1):77–81. https://doi.org/10.1023/A:1008398227519

    Article  CAS  PubMed  Google Scholar 

  92. Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29(19):4659–4667. https://doi.org/10.1021/bi00471a022

    Article  CAS  PubMed  Google Scholar 

  93. Lundstrom P, Vallurupalli P, Hansen DF, Kay LE (2009) Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 4(11):1641–1648. https://doi.org/10.1038/nprot.2009.118

    Article  CAS  PubMed  Google Scholar 

  94. Neudecker P, Lundstrom P, Kay LE (2009) Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J 96(6):2045–2054. https://doi.org/10.1016/j.bpj.2008.12.3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228. https://doi.org/10.1126/science.1124964

    Article  CAS  PubMed  Google Scholar 

  96. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp 34(2):93–158. https://doi.org/10.1016/S0079-6565(98)00025-9

    Article  CAS  Google Scholar 

  97. Farrow NA, Zhang O, Forman-Kay JD, Kay LE (1994) A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J Biomol NMR 4(5):727–734

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Palmer AG 3rd (2009) TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins. J Biomol NMR 45(4):357–360. https://doi.org/10.1007/s10858-009-9385-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vallurupalli P, Bouvignies G, Kay LE (2012) Studying "invisible" excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134(19):8148–8161. https://doi.org/10.1021/ja3001419

    Article  CAS  PubMed  Google Scholar 

  100. Vallurupalli P, Sekhar A, Yuwen T, Kay LE (2017) Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. J Biomol NMR 67(4):243–271. https://doi.org/10.1007/s10858-017-0099-4

    Article  CAS  PubMed  Google Scholar 

  101. Loria JP, Rance M, Palmer AG 3rd (1999) Transverse-relaxation-optimized (TROSY) gradient-enhanced triple-resonance NMR spectroscopy. J Magn Reson 141(1):180–184. https://doi.org/10.1006/jmre.1999.1891

    Article  CAS  PubMed  Google Scholar 

  102. Bibow S, Hiller S (2019) A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J 286(9):1610–1623. https://doi.org/10.1111/febs.14639

    Article  CAS  PubMed  Google Scholar 

  103. Pervushin K (2000) Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q Rev Biophys 33(2):161–197

    Article  CAS  PubMed  Google Scholar 

  104. Pervushin KV, Wider G, Wuthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY. J Biomol NMR 12(2):345–348. https://doi.org/10.1023/A:1008268930690

    Article  CAS  PubMed  Google Scholar 

  105. Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A 95(23):13585–13590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hiller S, Wider G, Etezady-Esfarjani T, Horst R, Wuthrich K (2005) Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol NMR 32(1):61–70. https://doi.org/10.1007/s10858-005-3070-8

    Article  CAS  PubMed  Google Scholar 

  107. Bruschweiler R, Ernst RR (1992) Molecular-dynamics monitored by Cross-correlated Cross relaxation of spins quantized along orthogonal axes. J Chem Phys 96(3):1758–1766

    Article  Google Scholar 

  108. Dalvit C (1992) 1H to 15N polarization transfer via 1H chemical-shift anisotropy—1H-15N dipole-dipole cross correlation. J Magn Reson 97(3):645–650

    CAS  Google Scholar 

  109. Brüschweiler R, RRJTJocp E (1992) Molecular dynamics monitored by cross-correlated cross relaxation of spins quantized along orthogonal axes. 96(3):1758–1766

    Google Scholar 

  110. Chhabra S, Fischer P, Takeuchi K, Dubey A, Ziarek JJ, Boeszoermenyi A, Mathieu D, Bermel W, Davey NE, Wagner G, Arthanari H (2018) (15)N detection harnesses the slow relaxation property of nitrogen: delivering enhanced resolution for intrinsically disordered proteins. Proc Natl Acad Sci U S A 115(8):E1710–E1719. https://doi.org/10.1073/pnas.1717560115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rossi P, Monneau YR, Xia Y, Ishida Y, Kalodimos CG (2019) Toolkit for NMR studies of methyl-labeled proteins. Methods Enzymol 614:107–142. https://doi.org/10.1016/bs.mie.2018.08.036

    Article  PubMed  Google Scholar 

  112. Kay LE, Gardner KH (1997) Solution NMR spectroscopy beyond 25 kDa. Curr Opin Struct Biol 7(5):722–731

    Article  CAS  PubMed  Google Scholar 

  113. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36(6):1389–1401. https://doi.org/10.1021/bi9624806

    Article  CAS  PubMed  Google Scholar 

  114. Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS One 7(9):e43725. https://doi.org/10.1371/journal.pone.0043725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tugarinov V, Kay LE (2005) Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 44(49):15970–15977. https://doi.org/10.1021/bi0519809

    Article  CAS  PubMed  Google Scholar 

  116. Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28(2):165–172. https://doi.org/10.1023/B:JNMR.0000013824.93994.1f

    Article  CAS  PubMed  Google Scholar 

  117. Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for (1)(3)C, (1)H labeling at the Ile-gamma2 methyl position in highly deuterated proteins. J Biomol NMR 48(3):129–135. https://doi.org/10.1007/s10858-010-9449-1

    Article  CAS  PubMed  Google Scholar 

  118. Ollerenshaw JE, Tugarinov V, Skrynnikov NR, Kay LE (2005) Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins. J Biomol NMR 33(1):25–41. https://doi.org/10.1007/s10858-005-2614-2

    Article  CAS  PubMed  Google Scholar 

  119. Azatian SB, Kaur N, Latham MP (2019) Increasing the buffering capacity of minimal media leads to higher protein yield. J Biomol NMR 73:11. https://doi.org/10.1007/s10858-018-00222-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kaur H, Lakatos A, Spadaccini R, Vogel R, Hoffmann C, Becker-Baldus J, Ouari O, Tordo P, McHaourab H, Glaubitz C (2015) The ABC exporter MsbA probed by solid state NMR - challenges and opportunities. Biol Chem 396(9–10):1135–1149. https://doi.org/10.1515/hsz-2015-0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. González-Romo P, Sánchez-Nieto S, MJAb G-R (1992) A modified colorimetric method for the determination of orthophosphate in the presence of high ATP concentrations. Anal Biochem 200(2):235–238

    Article  PubMed  Google Scholar 

  122. Mandal A, Boatz JC, Wheeler TB, van der Wel PC (2017) On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. J Biomol NMR 67(3):165–178. https://doi.org/10.1007/s10858-017-0089-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hartmann SR, Hahn EL (1962) Nuclear double resonance in rotating frame. Phys Rev 128(5):2042. https://doi.org/10.1103/PhysRev.128.2042

    Article  CAS  Google Scholar 

  124. Bräuniger T, Wormald P, Hodgkinson P (2002) Improved proton decoupling in NMR spectroscopy of crystalline solids using the S PINAL-64 sequence. In: Current developments in solid state NMR spectroscopy. Springer, Wien, pp 69–74

    Chapter  Google Scholar 

  125. Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5):631–637

    Article  CAS  Google Scholar 

  126. Liu ML, Mao XA, Ye CH, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132(1):125–129. https://doi.org/10.1006/jmre.1998.1405

    Article  CAS  Google Scholar 

  127. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125(34):10420–10428. https://doi.org/10.1021/ja030153x

    Article  CAS  PubMed  Google Scholar 

  128. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298. https://doi.org/10.1006/jmbi.1996.0399

    Article  CAS  PubMed  Google Scholar 

  129. Angius F, Ilioaia O, Amrani A, Suisse A, Rosset L, Legrand A, Abou-Hamdan A, Uzan M, Zito F, Miroux B (2018) A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins. Sci Rep 8(1):8572. https://doi.org/10.1038/s41598-018-26668-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20(1):71–75

    Article  CAS  PubMed  Google Scholar 

  131. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102. https://doi.org/10.1038/nature01070

    Article  CAS  PubMed  Google Scholar 

  132. Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum BJ, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260. https://doi.org/10.1007/s10858-009-9338-7

    Article  CAS  PubMed  Google Scholar 

  133. Schubert M, Manolikas T, Rogowski M, Meier BH (2006) Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J Biomol NMR 35(3):167–173. https://doi.org/10.1007/s10858-006-9025-x

    Article  CAS  PubMed  Google Scholar 

  134. Lacabanne D, Meier BH, Bockmann A (2018) Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J Biomol NMR 71(3):141–150. https://doi.org/10.1007/s10858-017-0156-z

    Article  CAS  PubMed  Google Scholar 

  135. Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14(1):71–74

    Article  CAS  PubMed  Google Scholar 

  136. Meissner A, Sorensen OW (2001) Sequential HNCACB and CBCANH protein NMR pulse sequences. J Magn Reson 151(2):328–331. https://doi.org/10.1006/jmre.2001.2374

    Article  CAS  PubMed  Google Scholar 

  137. Tugarinov V, Kay LE (2003) Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc 125(19):5701–5706. https://doi.org/10.1021/ja021452+

    Article  CAS  PubMed  Google Scholar 

  138. Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125(45):13868–13878. https://doi.org/10.1021/ja030345s

    Article  CAS  PubMed  Google Scholar 

  139. Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A 102(3):622–627. https://doi.org/10.1073/pnas.0407792102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131(4):756–769. https://doi.org/10.1016/j.cell.2007.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43(2):111–119. https://doi.org/10.1007/s10858-008-9294-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Swiss National Science Foundation and the NFP 72 (grants 31003A_166426 and 407240_167125 to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaur, H., Grahl, A., Hartmann, JB., Hiller, S. (2020). Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics