Skip to main content

Magnetic Resonance Imaging of Single Cells

  • Protocol
  • First Online:
Book cover Cell Tracking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2126))

Abstract

This chapter discusses a methodology for simultaneously imaging stem cells and endothelial cells within polysaccharide-based scaffolds for tissue engineering. These scaffolds were then implanted into nude mice. Human mesenchymal stem cells (HMSCs) were labeled with the T1-marker Gd(iii)-DOTAGA-functionalized polysiloxane nanoparticles (GdNPs), whereas endothelial umbilical vein cells (HUVECs) were labeled with citrate-stabilized maghemite nanoparticles (IONPs), which predominantly shorten the T2-relaxation times of the water molecules in scaffolds and tissue. Dual cell detection was achieved by performing T1- and T2-weighted MRI in both tissue scaffolds and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He X (2017) Microscale biomaterials with bioinspired complexity of early embryo development and in the ovary for tissue engineering and regenerative medicine. ACS Biomater Sci Eng 3:2692–2701

    Article  CAS  Google Scholar 

  2. Bulte JWM (2009) In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol 193:314–325

    Article  Google Scholar 

  3. Currie S, Hoggard N, Craven IJ et al (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89:209–223

    Article  Google Scholar 

  4. Gossuin Y, Hocq A, Gillis P et al (2010) Physics of magnetic resonance imaging: from spin to pixel. J Phys D Appl Phys 43:213001–213015

    Article  Google Scholar 

  5. Kim D, Kim J, Park YI et al (2018) Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci 4:324–336

    Article  CAS  Google Scholar 

  6. Di Corato R, Gazeau F, Le Visage C et al (2013) High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS Nano 7:7500–7512

    Article  Google Scholar 

  7. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  CAS  Google Scholar 

  8. Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8

    Article  CAS  Google Scholar 

  9. Caravan P, Ellison JJ, Mcmurry TJ et al (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  Google Scholar 

  10. Cohen SM, Xu J, Radkov E et al (2000) Syntheses and relaxation properties of mixed gadolinium hydroxypyridinonate MRI contrast agents. Inorg Chem 39:5747–5756

    Article  CAS  Google Scholar 

  11. Pierre VC, Botta M, Aime S et al (2006) Tuning the coordination number of hydroxypyridonate-based gadolinium complexes: implications for MRI contrast agents. J Am Chem Soc 128:5344–5345

    Article  CAS  Google Scholar 

  12. Zeng L, Wu D, Zou R et al (2018) Paramagnetic and Superparamagnetic Inorganic Nanoparticles for T1-Weighted Magnetic Resonance Imaging. Curr Med Chem 25:2970–2986

    Article  CAS  Google Scholar 

  13. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13

    Article  Google Scholar 

  14. Podaru G, Chikan V (2017) Magnetism in nanomaterials: heat and force from colloidal magnetic particles. In: Bossmann SH, Wang H (eds) Magnetic nanomaterials: applications in catalysis and life sciences. Royal Society of Chemistry, London, pp 1–21

    Google Scholar 

  15. Mosquera J, Garcia I, Liz-Marzan LM (2018) Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc Chem Res 51:2305–2313

    Article  CAS  Google Scholar 

  16. Chung H-J, Lee H-S, Bae KH et al (2011) Facile synthetic route for surface-functionalized magnetic nanoparticles: cell labeling and magnetic resonance imaging studies. ACS Nano 5:4329–4336

    Article  CAS  Google Scholar 

  17. Wilhelm C, Gazeau F (2008) Universal cell labeling with anionic magnetic nanoparticles. Biomaterials 29:3161–3174

    Article  CAS  Google Scholar 

  18. Lux F, Mignot A, Mowat P et al (2011) Ultrasmall rigid particles as multimodal probes for medical applications. Angew Chem Int Ed Engl 50:12299–12303

    Article  CAS  Google Scholar 

  19. Autissier A, Le Visage C, Pouzet C et al (2010) Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 6:3640–3648

    Article  CAS  Google Scholar 

  20. Le Visage C, Gournay O, Benguirat N et al (2012) Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 18:35–44

    Article  Google Scholar 

  21. Poirier-Quinot M, Frasca G, Wilhelm C et al (2010) High-resolution 1.5-Tesla magnetic resonance imaging for tissue-engineered constructs: a noninvasive tool to assess three-dimensional scaffold architecture and cell seeding. Tissue Eng Part C Methods 16:185–200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madumali Kalubowilage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kalubowilage, M., Bossmann, S.H. (2020). Magnetic Resonance Imaging of Single Cells. In: Basel, M., Bossmann, S. (eds) Cell Tracking. Methods in Molecular Biology, vol 2126. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0364-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0364-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0363-5

  • Online ISBN: 978-1-0716-0364-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics