Skip to main content

Biolistic Delivery of Programmable Nuclease (CRISPR/Cas9) in Bread Wheat

  • Protocol
  • First Online:
Biolistic DNA Delivery in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2124))

Abstract

The discovery of site-specific programmable nucleases has led to a major breakthrough in the area of genome editing. In the past few years, CRISPR/Cas system has been utilized for genome editing of a large number of crops including cereals like wheat, rice, maize, and barley. In terms of consumption, wheat is second only to rice as the most important crop of the world. In the present chapter, we describe biolistic delivery method of ribonucleoprotein (RNP) complexes of programmable nuclease (CRISPR/Cas9) for targeted genome editing and selection-free screening of transformants in wheat. The method not only overcomes the problem of random integration into the genome but also reduces the off-targets. Besides the step-by-step protocol, plausible challenges and ways to overcome them are also discussed. By using the described method of biolistic delivery of CRISPR/Cas9 in plant systems, genome-edited plants can be identified within 11 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. François IEJA, Broekaert WF, Cammue BPA (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci 163:281–295

    Article  Google Scholar 

  2. Fu X, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  CAS  Google Scholar 

  3. Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  4. Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. In: Functional genomics. Springer, New York, pp 183–200

    Chapter  Google Scholar 

  5. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  Google Scholar 

  6. Wang H, La RM, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  Google Scholar 

  7. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941

    Article  CAS  Google Scholar 

  8. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  Google Scholar 

  9. Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44

    Article  CAS  Google Scholar 

  10. Lin C, Hsu C, Yang L, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HC, Zhang Y, Zhang R, Chang WJ, Yu CT, Wang W, Liao LJ, Gelvin SB, Shih MC (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    Article  CAS  Google Scholar 

  11. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238

    Article  CAS  Google Scholar 

  12. Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74

    Article  CAS  Google Scholar 

  13. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  Google Scholar 

  14. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

  15. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  Google Scholar 

  16. Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA (2017) Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 35:431–434

    Article  CAS  Google Scholar 

  17. Cho SW, Lee J, Carroll D, Kim JS, Lee J (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins. Genetics 195:1177–1180

    Article  CAS  Google Scholar 

  18. Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, Robinson MD, Mosimann C (2016) Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143:2025–2037

    Article  CAS  Google Scholar 

  19. Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430

    Article  CAS  Google Scholar 

  20. Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  Google Scholar 

  21. Uauy C (2017) Wheat genomics comes of age. Curr Opin Plant Biol 36:142–148

    Article  Google Scholar 

  22. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  Google Scholar 

  23. Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41

    Article  CAS  Google Scholar 

  24. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  Google Scholar 

  25. Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  CAS  Google Scholar 

  26. He GY, Lazzeri PA (1998) Analysis and optimisation of DNA delivery into wheat scutellum and Tritordeum inflorescence explants by tissue electroporation. Plant Cell Rep 18:64–70

    Article  CAS  Google Scholar 

  27. Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    Article  CAS  Google Scholar 

  28. Harwood WA (2011) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63:1791–1798

    Article  Google Scholar 

  29. Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19:118–127

    Article  CAS  Google Scholar 

  30. Park J, Lim K, Kim J-S, Bae S (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33:286–288

    Article  CAS  Google Scholar 

  31. Barro F, Martin A, Lazzeri PA, Barceló P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108:161–167

    Article  Google Scholar 

  32. Schulze J (2007) Improvements in cereal tissue culture by thidiazuron: a review. Fruit Veg Cereal Sci Biotechnol 1:64–79

    Google Scholar 

  33. Sikandar, Ali W, Khan I, Munir I (2007) Optimization of in vitro conditions for callus induction, proliferation and regeneration in wheat (Triticum aestivum L.) cultivars. Biotechnology 6(3):420–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy K. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhandawat, A., Sharma, V., Rishi, V., K. Roy, J. (2020). Biolistic Delivery of Programmable Nuclease (CRISPR/Cas9) in Bread Wheat. In: Rustgi, S., Luo, H. (eds) Biolistic DNA Delivery in Plants. Methods in Molecular Biology, vol 2124. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0356-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0356-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0355-0

  • Online ISBN: 978-1-0716-0356-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics