Skip to main content

Complete Genome Sequencing of Influenza A Viruses Using Next-Generation Sequencing

  • Protocol
  • First Online:
Animal Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2123))

Abstract

Recently, chain termination sequencing methods have been replaced by more efficient next-generation sequencing (NGS) methods. For influenza A, NGS allows for deep sequencing to characterize virus populations, efficient complete genome sequencing, and a non-sequence-dependent method to identify viral variants. There are numerous approaches to preparing samples for NGS and subsequent data processing methods that can be applied to influenza A sequencing. This chapter provides a brief overview of the process of NGS for influenza A and some useful bioinformatics tools for developing an NGS workflow for influenza A viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, Wentworth DE (2009) Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol 83(19):10309–10313. https://doi.org/10.1128/JVI.01109-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernandez R, Lara-Puente JH, Castro-Peralta F, Cunha LF, Trovao NS, Lozano-Dubernard B, Rambaut A, van Bakel H, Garcia-Sastre A (2016) Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. elife 5. https://doi.org/10.7554/eLife.16777

  3. Yamashita A, Sekizuka T, Kuroda M (2016) VirusTAP: viral genome-targeted assembly pipeline. Front Microbiol 7:32. https://doi.org/10.3389/fmicb.2016.00032

    Article  PubMed  PubMed Central  Google Scholar 

  4. Briand FX, Henry A, Massin P, Jestin V (2012) Complete genome sequence of a novel avian paramyxovirus. J Virol 86(14):7710. https://doi.org/10.1128/JVI.00946-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joshi NA FJ (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle

  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orton RJ, Gu Q, Hughes J, Maabar M, Modha S, Vattipally SB, Wilkie GS, Davison AJ (2016) Bioinformatics tools for analysing viral genomic data. Rev Sci Tech 35(1):271–285. https://doi.org/10.20506/rst.35.1.2432

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, Yang B, Fan W (2012) Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 11(1):25–37. https://doi.org/10.1093/bfgp/elr035

    Article  CAS  PubMed  Google Scholar 

  9. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zerbino DR (2010) Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 11:15. https://doi.org/10.1002/0471250953.bi1105s31

    Article  Google Scholar 

  11. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11(5):473–483. https://doi.org/10.1093/bib/bbq015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keel BN, Snelling WM (2018) Comparison of Burrows-Wheeler transform-based mapping algorithms used in high-throughput whole-genome sequencing: application to illumina data for livestock genomes. Front Genet 9:35. https://doi.org/10.3389/fgene.2018.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  20. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14(2):193–202. https://doi.org/10.1093/bib/bbs012

    Article  CAS  PubMed  Google Scholar 

  21. Shepard SS, Meno S, Bahl J, Wilson MM, Barnes J, Neuhaus E (2016) Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics 17:708. https://doi.org/10.1186/s12864-016-3030-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, DH. (2020). Complete Genome Sequencing of Influenza A Viruses Using Next-Generation Sequencing. In: Spackman, E. (eds) Animal Influenza Virus. Methods in Molecular Biology, vol 2123. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0346-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0346-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0345-1

  • Online ISBN: 978-1-0716-0346-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics