Skip to main content

Using Giant Scarlet Runner Bean (Phaseolus coccineus) Embryos to Dissect the Early Events in Plant Embryogenesis

  • Protocol
  • First Online:
Plant Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2122))

Abstract

The giant embryo of the scarlet runner bean (Phaseolus coccineus) has been used historically to investigate the molecular and developmental processes that control the early events of plant embryo development. In more recent years, our laboratory has been using scarlet runner bean embryos to uncover the genes and regulatory events that control embryo proper and suspensor region differentiation shortly after fertilization. In this chapter we describe methods that we have developed to isolate scarlet runner bean embryos at the globular stage of development, and capture embryo proper and suspensor regions by either hand dissection or laser capture microdissection (LCM) for use in downstream genomic analysis. These methods are also applicable for use in investigating the early events of common bean (Phaseolus vulgaris) embryo development, a close relative of scarlet runner bean, which also has a giant embryo in addition to a sequenced genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerk NM et al (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132(1):27–35

    Article  CAS  Google Scholar 

  2. Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18(6):1030–1040

    Article  CAS  Google Scholar 

  3. Amatori S et al (2014) PAT-ChIP coupled with laser microdissection allows the study of chromatin in selected cell populations from paraffin-embedded patient samples. Epigenetics Chromatin 7:18

    Article  Google Scholar 

  4. Belmonte MF et al (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci U S A 110(5):E435–E444

    Article  CAS  Google Scholar 

  5. Palovaara J et al (2017) Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. Nat Plants 3(11):894–904

    Article  CAS  Google Scholar 

  6. Slane D et al (2014) Cell type-specific transcriptome analysis in the early Arabidopsis thaliana embryo. Development 141(24):4831–4840

    Article  CAS  Google Scholar 

  7. Brady T (1973) Feulgen cytophotometric setermination of the DNA content of the embryo proper and suspensor cells of Phaseolus coccineus. Cell Differ 2(2):65–75

    Article  CAS  Google Scholar 

  8. Clutter M et al (1974) Macromolecular synthesis during plant embryogeny. Cellular rates of RNA synthesis in diploid and polytene cells in bean embryos. J Cell Biol 63(3):1097–1102

    Article  CAS  Google Scholar 

  9. Henry KF, Goldberg RB (2015) Using giant scarlet runner bean embryos to uncover regulatory networks controlling suspensor gene activity. Front Plant Sci 6:44

    Article  Google Scholar 

  10. Kawashima T, Goldberg RB (2010) The suspensor: not just suspending the embryo. Trends Plant Sci 15(1):23–30

    Article  CAS  Google Scholar 

  11. Le BH et al (2007) Using genomics to study legume seed development. Plant Physiol 144(2):562–574

    Article  CAS  Google Scholar 

  12. Sussex I et al (1973) Biosynthetic activity of the suspensor of Phaseolus coccineus. Caryologia 25:261–272

    Article  Google Scholar 

  13. Yeung EC, Sussex I (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z. Pflanzenphysiol 91(5):423–433

    Article  CAS  Google Scholar 

  14. Walbot V et al (1972) Macromolecular synthesis during plant embryogeny: rates of RNA synthesis in Phaseolus coccineus embryos and suspensors. Dev Biol 29(1):104–111

    Article  CAS  Google Scholar 

  15. Walbot V, Clutter M, Sussex I (1972) Reproductive development and embryogeny in Phaseolus. Phytomorphology 22:59–78

    Google Scholar 

  16. Lorenzi R et al (1978) Embryo-suspensor relations in Phaseolus coccineus: Cytokinins during seed development. Planta 143:59–62

    Article  CAS  Google Scholar 

  17. Zhan J et al (2015) RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 27(3):513–531

    Article  CAS  Google Scholar 

  18. Weterings K et al (2001) Regional localization of suspensor mRNAs during early embryo development. Plant Cell 13(11):2409–2425

    Article  CAS  Google Scholar 

  19. Henry KF et al (2018) A shared cis-regulatory module activates transcription in the suspensor of plant embryos. Proc Natl Acad Sci U S A 115(25):E5824–E5833

    Article  CAS  Google Scholar 

  20. Henry KF, Kawashima T, Goldberg RB (2015) A cis-regulatory module activating transcription in the suspensor contains five cis-regulatory elements. Plant Mol Biol 88(3):207–217

    Article  CAS  Google Scholar 

  21. Kawashima T et al (2009) Identification of cis-regulatory sequences that activate transcription in the suspensor of plant embryos. Proc Natl Acad Sci U S A 106(9):3627–3632

    Article  CAS  Google Scholar 

  22. Cox KH, Goldberg RB (1988) In: Shaw CH (ed) Analysis of plant gene expression. Plant molecular biology: a practical approach. IRL Press, Oxford, United Kingdom

    Google Scholar 

  23. Sanders PM (2005) Differentiation and degeneration of cells that play a major role in tobacco anther dehiscence. Sex Plant Reprod 17:219–241

    Article  Google Scholar 

  24. Lin JY et al (2017) Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc Natl Acad Sci U S A 114(45):E9730–E9739

    Article  CAS  Google Scholar 

  25. Blackwall RLC (1971) A study of the plant/insect relationships and pod-setting in the runner bean (Phaseolus multiflorus). J Hort Sci 46:365–379

    Article  Google Scholar 

  26. Quagliotti L, Marletto F (1987) Research on the pollination of runner bean (Phaseolus coccineus) for dry grain production. Adv Hortic Sci 1(1):43–49

    Google Scholar 

  27. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45(3):379–396

    Article  Google Scholar 

  28. Schmutz J et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713

    Article  CAS  Google Scholar 

  29. Inada N, Wildermuth MC (2005) Novel tissue preparation method and cell-specific marker for laser microdissection of Arabidopsis mature leaf. Planta 221(1):9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work with scarlet runner bean embryos was supported by grants from the US Department of Agriculture, Ceres, Inc., and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, M., Bui, A.Q., Goldberg, R.B. (2020). Using Giant Scarlet Runner Bean (Phaseolus coccineus) Embryos to Dissect the Early Events in Plant Embryogenesis. In: Bayer, M. (eds) Plant Embryogenesis. Methods in Molecular Biology, vol 2122. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0342-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0342-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0341-3

  • Online ISBN: 978-1-0716-0342-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics