Skip to main content

HLApers: HLA Typing and Quantification of Expression with Personalized Index

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

The plethora of RNA-seq data which have been generated in the recent years constitutes an attractive resource to investigate HLA variation and its relationship with normal and disease phenotypes, such as cancer. However, next generation sequencing (NGS) brings new challenges to HLA analysis because of the mapping bias introduced by aligning short reads originated from polymorphic genes to a single reference genome. Here we describe HLApers, a pipeline which adapts widely used tools for analysis of standard RNA-seq data to infer HLA genotypes and estimate expression. By generating reliable expression estimates for each HLA allele that an individual carries, HLApers allows a better understanding of the relationship between HLA alleles and phenotypes manifested by an individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar VRC, Cesar J, Delaneau O et al (2019) Expression estimation and eQTL mapping for HLA genes with a personalized pipeline. PLoS Genet 15(4):e1008091

    Article  CAS  Google Scholar 

  2. Boegel S, Löwer M, Schäfer M et al (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(102):1–12

    Google Scholar 

  3. Brandt DYC, Aguiar VRC, Bitarello BD et al (2015) Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 Genomes Project phase I data. G3 5(5):931–941

    Article  Google Scholar 

  4. Bray N, Pimentel H, Melsted P et al (2016) Near-optimal RNA-Seq quantification. Nat Biotechnol 34(5):525–527

    Article  CAS  Google Scholar 

  5. Dendrou C, Petersen J, Rossjohn J et al (2018) HLA variation and disease. Nat Rev Immunol 18(5):325–339

    Article  CAS  Google Scholar 

  6. Dilthey A, Cox C, Iqbal Z et al (2015) Improved genome inference in the MHC using a population reference graph. Nat Genet 47(6):682–688

    Article  CAS  Google Scholar 

  7. Dilthey A, Gourraud P, Mentzer A et al (2016) High-accuracy HLA type inference from whole-genome sequencing data using population reference graphs. PLoS Comput Biol 12(10):e1005151

    Article  Google Scholar 

  8. Dobin A, Davis C, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  Google Scholar 

  9. Gensterblum-Miller E, Weisheng W, Sawalha A (2018) Novel transcriptional activity and extensive allelic imbalance in the human MHC region. J Immunol 200(4):1496–1503

    Article  CAS  Google Scholar 

  10. Gourraud PA, Khankhanian P, Cereb N et al (2014) HLA diversity in the 1000 genomes dataset. PLoS One 9(7):e97282

    Article  Google Scholar 

  11. GTEx Consortium (2017) Genetic effects on gene expression across human tissues. Nature 550(7675):204–213

    Article  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  13. Horton R, Wilming L, Rand V et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5(12):889–899

    Article  CAS  Google Scholar 

  14. Lappalainen T, Sammeth M, Friedländer M et al (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468):506–511

    Article  CAS  Google Scholar 

  15. Lee W, Plant K, Humburg P et al (2018) AltHapAlignR: improved accuracy of RNA-seq analyses through the use of alternative haplotypes. Bioinformatics 34(14):2401–2408

    Article  CAS  Google Scholar 

  16. Lenz TL, Spirin V, Jordan DM et al (2016) Excess of deleterious mutations around HLA genes reveals evolutionary cost of balancing selection. Mol Biol Evol 33(10):2555–2564

    Article  CAS  Google Scholar 

  17. Marty R, Kaabinejadian S, Rossell D et al (2017) MHC-I genotype restricts the oncogenic mutational landscape. Cell 171(6):1272–1283

    Article  CAS  Google Scholar 

  18. Meyer D, Aguiar VRC, Bitarello BD et al (2017) A genomic perspective on HLA evolution. Immunogenetics 70(1):5–27

    Article  Google Scholar 

  19. Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8:33

    Google Scholar 

  20. Orenbuch R, Filip I, Comito D et al (2018) arcasHLA: high resolution HLA typing from RNA seq. BioRxiv 479824

    Google Scholar 

  21. Patro R, Duggal G, Love M et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14(4):417–419

    Article  CAS  Google Scholar 

  22. Szolek A, Schubert B, Mohr C et al (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30(23):1–7

    Article  Google Scholar 

  23. The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nature 45:1113–1120

    Google Scholar 

  24. The International Cancer Genome Consortium (2010) International network of cancer genome projects. Nature 464:993–998

    Article  Google Scholar 

  25. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  Google Scholar 

  26. Thorsson V, Gibbs DL, Brown SD et al (2018) The immune landscape of cancer. Immunity 48(4):821–830

    Article  Google Scholar 

  27. Yarchoan M, Johnson III BA, Lutz ER et al (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(569):209–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Institutes of Health, USA (GM 075091). VRCA was supported by a postdoc fellowship from the São Paulo Funding Agency (FAPESP, http://www.fapesp.br/en/) (2014/12123-2 and 2016/24734-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor R. C. Aguiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aguiar, V.R.C., Masotti, C., Camargo, A.A., Meyer, D. (2020). HLApers: HLA Typing and Quantification of Expression with Personalized Index. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics