Skip to main content

The SysteMHC Atlas: a Computational Pipeline, a Website, and a Data Repository for Immunopeptidomic Analyses

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Mass spectrometry has emerged as the method of choice for the exploration of the immunopeptidome. Insights from the immunopeptidome promise novel cancer therapeutic approaches and a better understanding of the basic mechanisms of our immune system. To meet the computational demands from the steady gain in popularity and reach of mass spectrometry-based immunopeptidomics analysis, we created the SysteMHC Atlas project, a first-of-its-kind computational pipeline and resource repository dedicated to standardizing data analysis and public dissemination of immunopeptidomic datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shastri N, Schwab S, Serwold T (2002) Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 20(1):463–493

    Article  CAS  Google Scholar 

  2. Kambayashi T, Laufer TM (2014) Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14(11):719

    Article  CAS  Google Scholar 

  3. Falk K, Rötzschke O, Stevanovié S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324):290

    Article  CAS  Google Scholar 

  4. Hunt DF, Henderson RA, Shabanowitz J et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255(5049):1261–1263

    Article  CAS  Google Scholar 

  5. Rammensee H-G, Friede T, Stevanović S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41(4):178–228

    Article  CAS  Google Scholar 

  6. Caron E, Kowalewski DJ, Koh CC et al (2015) Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics 14(12):3105–3117

    Article  CAS  Google Scholar 

  7. Liepe J, Marino F, Sidney J et al (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354(6310):354–358

    Article  CAS  Google Scholar 

  8. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111. 016717

    Article  Google Scholar 

  9. Ludwig C, Gillet L, Rosenberger G et al (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126

    Article  Google Scholar 

  10. Caron E, Espona L, Kowalewski DJ et al (2015) An open-source computational and data resource to analyze digital maps of immunopeptidomes. elife 4:e07661

    Article  Google Scholar 

  11. Schuster H, Shao W, Weiss T et al (2018) A tissue-based draft map of the murine MHC class I immunopeptidome. Scientific data 5:180157

    Article  CAS  Google Scholar 

  12. Bassani-Sternberg M, Bräunlein E, Klar R et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404

    Article  CAS  Google Scholar 

  13. Faridi P, Li C, Ramarathinam SH et al (2018) A subset of HLA-I peptides are not genomically templated: evidence for cis-and trans-spliced peptide ligands. Sci Immunol 3(28):eaar3947

    Article  Google Scholar 

  14. Bassani-Sternberg M, Coukos G (2016) Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol 41:9–17

    Article  CAS  Google Scholar 

  15. Faridi P, Purcell AW, Croft NP (2018) In immunopeptidomics we need a sniper instead of a shotgun. Proteomics 18(12):1700464

    Article  Google Scholar 

  16. Shao W, Pedrioli PG, Wolski W et al (2017) The SysteMHC atlas project. Nucleic Acids Res 46(D1):D1237–D1247

    Article  Google Scholar 

  17. Shao W, Lam H (2017) Tandem mass spectral libraries of peptides and their roles in proteomics research. Mass Spectrom Rev 36(5):634–648

    Article  CAS  Google Scholar 

  18. Pedrioli PG (2010) Trans-proteomic pipeline: a pipeline for proteomic analysis. In: Proteome bioinformatics. Springer, New York, NY, pp 213–238

    Chapter  Google Scholar 

  19. Pedrioli PG, Eng JK, Hubley R et al (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459

    Article  CAS  Google Scholar 

  20. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918

    Article  CAS  Google Scholar 

  21. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24

    Article  CAS  Google Scholar 

  22. Fenyö D, Beavis RC (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75(4):768–774

    Article  Google Scholar 

  23. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207

    Article  CAS  Google Scholar 

  24. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392

    Article  CAS  Google Scholar 

  25. Shteynberg D, Deutsch EW, Lam H et al (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10(12):M111. 007690

    Article  Google Scholar 

  26. Karosiene E, Lundegaard C, Lund O et al (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64(3):177–186

    Article  CAS  Google Scholar 

  27. Lam H, Deutsch EW, Eddes JS et al (2008) Building consensus spectral libraries for peptide identification in proteomics. Nat Methods 5(10):873

    Article  CAS  Google Scholar 

  28. Shao W, Lam H (2013) Denoising peptide tandem mass spectra for spectral libraries: a Bayesian approach. J Proteome Res 12(7):3223–3232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the whole Aebersold lab for their support and critical discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenguang Shao or Etienne Caron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shao, W., Caron, E., Pedrioli, P., Aebersold, R. (2020). The SysteMHC Atlas: a Computational Pipeline, a Website, and a Data Repository for Immunopeptidomic Analyses. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics