Skip to main content

Detection of Bleomycin-Induced DNA Double-Strand Breaks in Escherichia coli by Pulsed-Field Gel Electrophoresis Using a Rotating Gel Electrophoresis System

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2119))

Abstract

DNA double-strand break (DSB) is one of the most genotoxic lesions, and unrepaired DSBs can lead to chromosomal instability and eventually cause cell death. Quantitative markers, such as phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1) foci in mammalian cells, are not available for the detection of DSBs in prokaryotes. Therefore, as an alternative method, pulsed-field gel electrophoresis (PFGE) is widely used to analyze broken DNA molecules by separating them from intact DNA. Here, we examined the accumulation of bleomycin (BLM)-induced DSBs by PFGE, using a rotating gel electrophoresis (RGE) system. We defined two sets of parameters with distinct advantages; the first one focuses on the analysis of the size of the broken DNA fragments, whereas the second allows for the direct comparison of the accumulation of DSBs among strains and treatments. This method represents a powerful tool for the study of genomic integrity and the characterization of genotoxic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanada K, Yamashita T, Shobuike Y, Ikeda H (2001) Role of DnaB helicase in UV-induced illegitimate recombination in Escherichia coli. J Bacteriol 183:4964–4969

    Article  CAS  Google Scholar 

  2. Shiraishi K, Ogata Y, Hanada K, Kano Y, Ikeda H (2007) Roles of the DNA binding proteins H-NS and StpA in homologous recombination and repair of bleomycin-induced damage in Escherichia coli. Genes Genet Syst 82:433–439

    Article  Google Scholar 

  3. Michel B, Sinha AK, Leach DRF (2018) Replication fork breakage and restart in Escherichia coli. Microbiol Mol Biol Rev 82

    Google Scholar 

  4. Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95:419–430

    Article  CAS  Google Scholar 

  5. Handa N, Kobayashi I (2003) Accumulation of large non-circular forms of the chromosome in recombination-defective mutants of Escherichia coli. BMC Mol Biol 4:5

    Article  Google Scholar 

  6. Kowalczykowski SC (2015) An Overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect Biol 7:a016410

    Article  Google Scholar 

  7. Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H (1997) RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci U S A 94:3860–3865

    Article  CAS  Google Scholar 

  8. Hanada K, Iwasaki M, Ihashi S, Ikeda H (2000) UvrA and UvrB suppress illegitimate recombination: synergistic action with RecQ helicase. Proc Natl Acad Sci U S A 97:5989–5994

    Article  CAS  Google Scholar 

  9. Courcelle J, Wendel BM, Livingstone DD, Courcelle CT (2015) RecBCD is required to complete chromosomal replication: implications for double-strand break frequencies and repair mechanisms. DNA Repair (Amst) 32:86–95

    Article  CAS  Google Scholar 

  10. Smith GR (2012) How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist’s view. Microbiol Mol Biol Rev 76(2):217–228

    Article  CAS  Google Scholar 

  11. Bell JC, Kowalczykowski SC (2016) RecA: regulation and mechanism of a molecular search engine. Trends Biochem Sci 41:491–507

    Article  CAS  Google Scholar 

  12. Muller B, Jones C, West SC (1990) T7 endonuclease I resolves Holliday junctions formed in vitro by RecA protein. Nucleic Acids Res 18:5633–5636

    Article  CAS  Google Scholar 

  13. West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31:213–244

    Article  CAS  Google Scholar 

  14. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  CAS  Google Scholar 

  15. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411

    Article  CAS  Google Scholar 

  16. Michel B, Ehrlich SD, Uzest M (1997) DNA double-strand breaks caused by replication arrest. EMBO J 16:430–438

    Article  CAS  Google Scholar 

  17. Xu T, Brown W, Marinus MG (2012) Bleomycin sensitivity in Escherichia coli is medium-dependent. PLoS One 7:e33256

    Article  CAS  Google Scholar 

  18. Gutteridge JM, West M, Eneff K, Floyd RA (1990) Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products. Free Radic Res Commun 10:159–165

    Article  CAS  Google Scholar 

  19. Chen J, Ghorai MK, Kenney G, Stubbe J (2008) Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage. Nucleic Acids Res 36:3781–3790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All bacterial strains used in this study were provided by the National BioResource Project (NBRP) E. coli Strain collection (Microbial Genetics Laboratory, National Institute of Genetics, Mishima, Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Nishida or Katsuhiro Hanada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Inoue, N., Narahara, H., Nishida, Y., Hanada, K. (2020). Detection of Bleomycin-Induced DNA Double-Strand Breaks in Escherichia coli by Pulsed-Field Gel Electrophoresis Using a Rotating Gel Electrophoresis System. In: Hanada, K. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 2119. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0323-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0323-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0322-2

  • Online ISBN: 978-1-0716-0323-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics