Skip to main content

Creating 2D Occupancy Plots Using plot2DO

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2117))

Abstract

Chromatin organization and epigenetic marks play a critical role in stem cell pluripotency and differentiation. Chromatin digestion by micrococcal nuclease (MNase) followed by high-throughput sequencing (MNase-seq) is the most widely used genome-wide method for studying nucleosome organization, that is, the first level of DNA packaging into chromatin. Combined with chromatin immunoprecipitation (ChIP), MNase-ChIP-seq represents a high-resolution method for investigating both chromatin organization and the distribution of epigenetic marks and histone variants. The plot2DO package presented here is a flexible tool for evaluating the quality of MNase-seq and MNase-ChIP-seq data, and for visualizing the distribution of nucleosomes near the functional regions of the genome. The plot2DO package is open-source software, and it is freely available from https://github.com/rchereji/plot2DO under the MIT license.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. https://doi.org/10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Lee CK, Granek JA, Clarke ND, Lieb JD (2006) Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res 16(12):1517–1528. https://doi.org/10.1101/gr.5655606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518(7539):331–336. https://doi.org/10.1038/nature14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dingwall C, Lomonossoff GP, Laskey RA (1981) High sequence specificity of micrococcal nuclease. Nucleic Acids Res 9(12):2659–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9(12):2643–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chereji RV, Kan TW, Grudniewska MK, Romashchenko AV, Berezikov E, Zhimulev IF, Guryev V, Morozov AV, Moshkin YM (2016) Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Nucleic Acids Res 44(3):1036–1051. https://doi.org/10.1093/nar/gkv978

    Article  CAS  PubMed  Google Scholar 

  7. Chereji RV, Ocampo J, Clark DJ (2017) MNase-sensitive complexes in yeast: nucleosomes and non-histone barriers. Molecular cell 65(3):565–577. e563. https://doi.org/10.1016/j.molcel.2016.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. https://doi.org/10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chereji RV, Clark DJ (2018) Major determinants of nucleosome positioning. Biophys J 114(10):2279–2289. https://doi.org/10.1016/j.bpj.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henikoff JG, Belsky JA, Krassovsky K, Macalpine DM, Henikoff S (2011) Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A 108(45):18318–18323. https://doi.org/10.1073/pnas.1110731108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chereji RV, Ramachandran S, Bryson TD, Henikoff S (2018) Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol 19(1):19. https://doi.org/10.1186/s13059-018-1398-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawrence MBD, Coutin N, Choi JK, Martin BJE, Irwin NAT, Young B, Loewen C, Howe LJ (2017) Histone acetylation, not stoichiometry, regulates linker histone binding in Saccharomyces cerevisiae. Genetics 207(1):347–355. https://doi.org/10.1534/genetics.117.1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rawal Y, Chereji RV, Qiu H, Ananthakrishnan S, Govind CK, Clark DJ, Hinnebusch AG (2018) SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 32(9-10):695–710. https://doi.org/10.1101/gad.312850.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ocampo J, Chereji RV, Eriksson PR, Clark DJ (2016) The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res 44(10):4625–4635. https://doi.org/10.1093/nar/gkw068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson TA, Chereji RV, Stavreva DA, Morris SA, Hager GL, Clark DJ (2018) Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res 46(1):203–214. https://doi.org/10.1093/nar/gkx1044

    Article  CAS  PubMed  Google Scholar 

  16. West JA, Cook A, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ, Tolstorukov MY, Kingston RE (2014) Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun 5:4719. https://doi.org/10.1038/ncomms5719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Natalia Petrenko, Burke Squires, Ming-an Sun, and Yashpal Rawal for insightful discussions and for testing the software. R.V.C. was supported by the Intramural Research Program of the National Institute of Child Health and Human Development, National Institutes of Health. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beati, P., Chereji, R.V. (2020). Creating 2D Occupancy Plots Using plot2DO. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 2117. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0301-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0301-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0300-0

  • Online ISBN: 978-1-0716-0301-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics