Skip to main content

Polysome Profiling and Metabolic Labeling Methods to Measure Translation in Trypanosoma brucei

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

The amount of a protein that is made in a cell is determined not only by the corresponding mRNA level but also by the efficiency with which the mRNA is translated. Very powerful transcriptome-wide methods are available to analyze both the density of ribosomes on each mRNA and the rate at which polypeptides are elongated. However, for many research questions, simpler, less expensive methods are more suitable. Here we describe two methods to assess the general translation status of cells: polysome profiling by sucrose density gradient centrifugation and metabolic labeling using radioactive amino acids. Both methods can also be used to examine translation of individual mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGlincy N, Ingolia N (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–129

    Article  Google Scholar 

  2. Vasquez JJ, Hon CC, Vanselow JT, Schlosser A, Siegel TN (2014) Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 42:3623–3637

    Article  CAS  Google Scholar 

  3. Jensen BC, Ramasamy G, Vasconcelos EJ, Ingolia NT, Myler PJ, Parsons M (2014) Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15:911

    Article  Google Scholar 

  4. Antwi E, Haanstra J, Ramasamy G, Jensen B, Droll D, Rojas F, Minia I, Terrao M, Mercé C, Matthews K et al (2016) Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression. BMC Genomics 17:306

    Article  Google Scholar 

  5. Schott J, Reitter S, Philipp J, Haneke K, Schafer H, Stoecklin G (2014) Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 10:e1004368

    Article  Google Scholar 

  6. Mugo E, Clayton C (2017) Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog 13:e1006560

    Article  Google Scholar 

  7. Minia I, Merce C, Terrao M, Clayton C (2016) Translation regulation and RNA granule formation after heat shock of procyclic form Trypanosoma brucei: many heat-induced mRNAs are increased during differentiation to mammalian-infective forms. PLoS Negl Trop Dis 10:e0004982

    Article  Google Scholar 

  8. Djikeng A, Shi H, Tschudi C, Shen S, Ullu E (2003) An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9:802–808

    Article  CAS  Google Scholar 

  9. Richter JD, Coller J (2015) Pausing on polyribosomes: make way for elongation in translational control. Cell 163:292–300

    Article  CAS  Google Scholar 

  10. Ingolia N, Lareau L, Weissman J (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  Google Scholar 

  11. Krstin S, Peixoto HS, Wink M (2015) Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against Trypanosoma brucei brucei. Antimicrob Agents Chemother 59:7011–7017

    Article  CAS  Google Scholar 

  12. Clamer M, Tebaldi T, Lauria F, Bernabo P, Gomez-Biagi RF, Marchioretto M, Kandala DT, Minati L, Perenthaler E, Gubert D et al (2018) Active ribosome profiling with RiboLace. Cell Rep 25:1097–1108. e1095

    Article  CAS  Google Scholar 

  13. Minia I, Clayton C (2016) Regulating a post-transcriptional regulator: protein phosphorylation, degradation and translational blockage in control of the trypanosome stress-response RNA-binding protein ZC3H11. PLoS Pathog 12:e1005514

    Article  Google Scholar 

  14. Gale M Jr, Carter V, Parsons M (1994) Translational control mediates the developmental regulation of the Trypanosoma brucei Nrk protein kinase. J Biol Chem 269:31659–31665

    CAS  PubMed  Google Scholar 

  15. Begolo D, Vincent I, Giordani F, Pöhner I, Witty M, Rowan T, Bengaly Z, Gillingwater K, Freund Y, Wade R et al (2018) The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog 14:e1007315

    Article  Google Scholar 

  16. Terrao M, Kamanyi Marucha K, Mugo E, Droll D, Minia I, Egler F, Braun J, Clayton C (2018) The suppressive cap-binding-complex factor 4EIP is required for normal differentiation. Nucleic Acids Res 46:8993–9010

    Article  CAS  Google Scholar 

  17. Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC (2012) Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A 109:11160–11165

    Article  CAS  Google Scholar 

  18. Schmidt EK, Clavarino G, Ceppi M, Pierre P (2009) SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 6:275–277

    Article  CAS  Google Scholar 

  19. Aviner R, Geiger T, Elroy-Stein O (2014) Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P). Nat Protoc 9:751–760

    Article  CAS  Google Scholar 

  20. Luthe DS (1983) A simple technique for the preparation and storage of sucrose gradients. Anal Biochem 135:230–232

    Article  CAS  Google Scholar 

  21. Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905

    Article  CAS  Google Scholar 

  22. Cristodero M, Böttcher B, Diepholz M, Scheffzeck K, Clayton C (2008) The exosome of Leishmania tarentolae: purification and structural analysis by electron microscopy. Mol Biochem Parasitol 159:24–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work by Kathryn Bajak is supported by the Deutsche Forschungsgemeinschaft (DFG), grant Cl112/24 to C. Clayton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bajak, K., Clayton, C. (2020). Polysome Profiling and Metabolic Labeling Methods to Measure Translation in Trypanosoma brucei. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics