Skip to main content

Cellular Markers for the Identification of Chemoresistant Isolates in Leishmania

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

Markers to diagnose chemoresistance in infecting Leishmania parasites are urgently required. This is fundamental for patients who do not heal during or after treatment, as they are unresponsive, or patients who relapse at the end of the therapy, suffering from therapeutic failure. Glucose utilization is an indicator of cell viability that closely associates with metabolic activity. In Leishmania, glucose is a source of carbon atoms and is imported into the cell through specific transporters. In experimentally developed chemoresistant Leishmania parasites a significant decrease of the expression of glucose transporters as well as in the cellular accumulation glucose has been described. Alternatively, the electrical membrane potential is an essential parameter for the formation of the electromotive force needed for the acquisition of important nutrients and solutes (e.g., glucose) by cells, and changes in glucose concentration are suggested to constitute a physiological adaptation associated with a chemoresistant phenotype of Leishmania parasites. Here we describe easy methods to measure glucose uptake and the membrane potential in isolates from patient suffering leishmaniasis. Correlation between both parameters might be helpful to identify chemoresistant parasites. Results suggest that the measured kinetics of glucose utilization rate can be correlated with the plasma membrane potential and together used to differentiate between the performance of wild-type and reference parasites on the one hand and parasites isolated from patients with therapeutic failure on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barret M Bolelart M, Castillo-Riquelme M et al. (2010) Research priorities for Chagas disease, human African Trypanosomiasis and Leishmaniasis. Technical report of the TDR Disease Reference Group on Chagas disease, Human African Trypanosomiasis and Leishmaniasis

    Google Scholar 

  2. Salaam-Blyther T. (2013) Neglected tropical diseases: background, responses, and issues. R41607 CRS report for Congress Congressional Research Service. www.crs.gov

  3. G-Science Academies Statements (2013) Drug resistance in infectious agents – a global threat to humanity innovation. www.who.int/pmnch/media/membernews/2011/20110407_who_whd/en/

  4. Ponte-Sucre A, Gamarro F, Dujardin JC et al (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11(12):e0006052. https://doi.org/10.1371/journal.pntd.0006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reveiz L, Maia-Elkhoury ANS, Nicholls RS et al (2013) Interventions for american cutaneous and mucocutaneous leishmaniasis: a systematic review update. PLoS One 8:1–14

    Google Scholar 

  6. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Durán C, Quiroga MF, Díaz-bello Z et al (2009) Leishmania chagasi y Trypanosoma cruzi: conducta trófica en cultivos axénicos puros y mixtos. Bol Malariol y Salud Ambient 49:97–106

    Google Scholar 

  8. Subramanian A, Jhawar J, Sarkar RR (2015) Dissecting Leishmania infantum energy metabolism – a systems perspective. PLoS One 10:e0137976. (1–34)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Michels PAM, Bringaud F, Herman M et al (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763:1463–1477

    Article  CAS  PubMed  Google Scholar 

  10. Furuya T, Kessler P, Jardim A et al (2002) Glucose is toxic to glycosome-deficient trypanosomes. Proc Natl Acad Sci U S A 99:14177–14182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saunders EC, Ng WW, Kloehn J et al (2014) Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 10:e1003888. (1–15)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burchmore RJS, Hart DT (1995) Glucose transport in amastigotes and promastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol 74:77–86

    Article  CAS  PubMed  Google Scholar 

  13. Seyfang A, Landfear SM (1999) Substrate depletion upregulates uptake of myo-inositol, glucose and adenosine in Leishmania. Mol Biochem Parasitol 104:121–130

    Article  CAS  PubMed  Google Scholar 

  14. Machuca C, Rodríguez A, Herrera M et al (2006) Leishmania amazonensis: metabolic adaptations induced by resistance to an ABC transporter blocker. Exp Parasitol 114(1):1–9

    Article  CAS  PubMed  Google Scholar 

  15. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen aceptor. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  16. Seyfang A, Duszenko M (1991) Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B. Eur J Biochem 202:191–196

    Article  CAS  PubMed  Google Scholar 

  17. Padrón-Nieves M, Diaz E, Machuca C et al (2014) Correlation between glucose uptake and membrane potential in Leishmania parasites isolated from DCL-patients with therapeutic failure: a proof of concept. Parasitol Res 113(6):2121–2128

    Article  PubMed  Google Scholar 

  18. Konings W, Albers S-V, Koning S et al (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81:61–72

    Article  CAS  PubMed  Google Scholar 

  19. Nolan DP, Voorheis HP (2000) Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei. Eur J Biochem 267:4615–4623

    Article  CAS  PubMed  Google Scholar 

  20. Purves D, Augustine GJ, Fitzpatrick D et al (2001) Electrical signals of nerve cells. In: Purves D, Augustine GJ, Fitzpatrick D et al (eds) Neuroscience. Sinauer Associates, Sunderland, MA, pp 31–46

    Google Scholar 

  21. Glaser TA, Utz GL, Mukkada AJ (1992) The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes. Mol Biochem Parasitol 51:9–15

    Article  CAS  PubMed  Google Scholar 

  22. Zilberstein D, Dwyer DM (1985) Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci U S A 82:1716–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zilberstein D, Dwyer DM (1988) Identification of a surface membrane proton-translocating ATPase in promastigotes of the parasitic protozoan Leishmania donovani. Biochem J 256:13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchesini N, Docampo R (2002) A plasma membrane P-type H+-ATPase regulates intracellular pH in Leishmania mexicana amazonensis. Mol Biochem Parasitol 119:225–236

    Article  CAS  PubMed  Google Scholar 

  25. Vieira L, Slotki I, Cabantchik ZI (1995) Chloride conductive pathways which support electrogenic H+ pumping by Leishmania major promastigotes. J Biol Chem 270:5299–5304

    Article  CAS  PubMed  Google Scholar 

  26. Souto-Padron T (2002) The surface charge of trypanosomatids. An Acad Bras Cienc 74:649–675

    Article  PubMed  Google Scholar 

  27. Bene L (2013) Oxonol has the potential to probe membrane fields. Cytometry A 83:608–611

    Article  PubMed  Google Scholar 

  28. DiSBAC2(3) (bis-(1,3-diethylthiobarbituric acid)trimethine oxonol). https://www.thermofisher.com/order/catalog/product/B413?SID=srch-srp-

  29. Vanaerschot M, Maes I, Ouakad M et al (2010) Linking in vitro and in vivo survival of clinical Leishmania donovani strains. PLoS One 8(8):e12211. https://doi.org/10.1371/journal.pone.00122

    Article  Google Scholar 

  30. Rodríguez N, De Lima H, Aguilar CM et al (2002) Molecular epidemiology of cutaneous leishmaniasis in Venezuela. Trans R Soc Trop Med Hyg 96(S1):105–109

    Article  Google Scholar 

  31. Coelho AC, Beverley SM, Cotrim PC (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol 130:83–90

    Article  CAS  PubMed  Google Scholar 

  32. Uzcategui NL, Figarella K, Camacho N et al (2005) Substrate preferences and glucose uptake in glibenclamide-resistant Leishmania parasites. Comp Biochem Physiol C Toxicol Pharmacol 140(3–4):395–402

    Article  PubMed  Google Scholar 

  33. Adams DS, Levin M (2012) Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harb Protoc 4:459–464. https://doi.org/10.1101/pdb.prot067702.

    Article  Google Scholar 

  34. Díaz-Achirica P, Ubach J, Guinea A et al (1998) The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 330:453–460

    Article  PubMed  PubMed Central  Google Scholar 

  35. Padrón-Nieves M, Machuca C, Díaz E et al (2014) Correlation between glucose uptake and membrane potential in Leishmania parasites isolated from DCL patients with therapeutic failure: a proof of concept. Parasitol Res 113:2121–2128

    Article  PubMed  Google Scholar 

  36. Natera S, Machuca C, Padrón-Nieves M et al (2007) Leishmania spp.: proficiency of drug resistant parasites. Int J Antimicrob Agents 29:637–642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Emilia Diaz, Med. Vet. Wilmer Alcazar, and Med. Doc. Michelle Giammarressi for details related to the methods herein described and to Mrs. Pilar Rodríguez for her technical assistance. Likewise, they are grateful for the support conferred by the Alexander von Humboldt Foundation and the Siebold-Collegium Institute for Advanced Studies, University of Würzburg, Germany, to Alicia Ponte-Sucre. The authors are grateful to the Universidad Central de Venezuela Council for Research, grants CDCH-UCV PI-09-8717-2013/1 and PG-09-8646-2013/1. This project was approved by the Ethical Committee of the Institute of Biomedicine, Universidad Central de Venezuela.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Padrón-Nieves, M., Ponte-Sucre, A. (2020). Cellular Markers for the Identification of Chemoresistant Isolates in Leishmania. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_44

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics