Skip to main content

In Vivo Tethering System to Isolate RNA-Binding Proteins Regulating mRNA Decay in Leishmania

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

RNA-binding proteins (RBPs) play key roles in many aspects of RNA metabolism. In Leishmania, a unicellular eukaryote that favors the posttranscriptional mode of regulation for controlling gene expression levels, the function of RBPs becomes even more critical. However, due largely to limited in vivo approaches available for identifying RBPs in these parasites, there have been no significant advances to our understanding of the role these proteins play in posttranscriptional control through binding to cis-acting elements in the 3′ untranslated region (3′UTR) of mRNAs. Here we describe an optimized in vivo RNA tethering approach using the bacteriophage MS2 coat protein combined to immunoprecipitation and mass spectrometry analysis to identify RBPs specifically interacting with 3′UTR short interspersed degenerated retroposon elements (SIDERs). Members of the SIDER2 subfamily were shown previously to promote mRNA degradation through a novel mechanism of mRNA decay. Using this modified MS2 tethering approach, we have identified candidate RBPs specifically interacting with SIDER2 elements and contributing to the decay mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10(6):569–577

    Article  CAS  Google Scholar 

  2. Clayton CE (2016) Gene expression in kinetoplastids. Curr Opin Microbiol 32:46–51

    Article  CAS  Google Scholar 

  3. Bringaud F, Müller M, Cerqueira GC et al (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog 3(9):1291–1307

    Article  CAS  Google Scholar 

  4. Müller M, Padmanabhan PK, Rochette A et al (2010) Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3′-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation. Nucleic Acids Res 38(17):5867–5883

    Article  Google Scholar 

  5. Müller M, Padmanabhan PK, Papadopoulou B (2010) Selective inactivation of SIDER2 retroposon-mediated mRNA decay contributes to stage- and species-specific gene expression in Leishmania. Mol Microbiol 77(2):471–491

    Article  Google Scholar 

  6. Azizi H, Romao TP, Charret SK et al (2017) RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation. PLoS One 12(7):e0180678

    Article  Google Scholar 

  7. Clement SL, Lykke-Andersen J (2008) A tethering approach to study proteins that activate mRNA turnover in human cells. Methods Mol Biol 419:121–133

    Article  CAS  Google Scholar 

  8. Park E, Gleghorn ML, Maquat LE (2013) Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc Natl Acad Sci U S A 110(2):405–412

    Article  CAS  Google Scholar 

  9. Yokoshi M, Li Q, Yamamoto M et al (2014) Direct binding of Ataxin-2 to distinct elements in 3′ UTRs promotes mRNA stability and protein expression. Mol Cell 55(2):186–198

    Article  CAS  Google Scholar 

  10. Erben ED, Fadda A, Lueong S et al (2014) A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog 10(6):e1004178

    Article  Google Scholar 

  11. Bernardi A, Spahr PF (1972) Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17. Proc Natl Acad Sci U S A 69(10):3033–3037

    Article  CAS  Google Scholar 

  12. Carey J, Lowary PT, Uhlenbeck OC (1983) Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site. Biochemistry 22(20):4723–4730

    Article  CAS  Google Scholar 

  13. Bardwell VJ, Wickens M (1990) Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 18(22):6587–6594

    Article  CAS  Google Scholar 

  14. LeCuyer KA, Behlen LS, Uhlenbeck OC (1996) Mutagenesis of a stacking contact in the MS2 coat protein-RNA complex. EMBO J 15(24):6847–6853

    Article  CAS  Google Scholar 

  15. Keryer-Bibens C, Barreau C, Osborne HB (2008) Tethering of proteins to RNAs by bacteriophage proteins. Biol Cell 100(2):125–138

    Article  CAS  Google Scholar 

  16. Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16(2):95–109

    Article  CAS  Google Scholar 

  17. Jha BA, Fadda A, Merce C et al (2014) Depletion of the Trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. Eukaryot Cell 13(5):664–674

    Article  Google Scholar 

  18. Singh A, Minia I, Droll D et al (2014) Trypanosome MKT1 and the RNA-binding protein ZC3H11: interactions and potential roles in post-transcriptional regulatory networks. Nucleic Acids Res 42(7):4652–4668

    Article  CAS  Google Scholar 

  19. Droll D, Minia I, Fadda A et al (2013) Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein. PLoS Pathog 9(4):e1003286

    Article  CAS  Google Scholar 

  20. Wurst M, Seliger B, Jha BA et al (2012) Expression of the RNA recognition motif protein RBP10 promotes a bloodstream-form transcript pattern in Trypanosoma brucei. Mol Microbiol 83(5):1048–1063

    Article  CAS  Google Scholar 

  21. Delhi P, Queiroz R, Inchaustegui D et al (2011) Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 6(9):e25112

    Article  CAS  Google Scholar 

  22. Gehring NH, Hentze MW, Kulozik AE (2008) Tethering assays to investigate nonsense-mediated mRNA decay activating proteins. Methods Enzymol 448:467–482

    Article  CAS  Google Scholar 

  23. Jha BA, Gazestani VH, Yip CW et al (2015) The DRBD13 RNA binding protein is involved in the insect-stage differentiation process of Trypanosoma brucei. FEBS Lett 589(15):1966–1974

    Article  CAS  Google Scholar 

  24. Finoux AL, Seraphin B (2006) In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. J Biol Chem 281(36):25940–25947

    Article  CAS  Google Scholar 

  25. Brodsky AS, Silver PA (2002) Identifying proteins that affect mRNA localization in living cells. Methods 26(2):151–155

    Article  CAS  Google Scholar 

  26. Brodsky AS, Silver PA (2000) Pre-mRNA processing factors are required for nuclear export. RNA 6(12):1737–1749

    Article  CAS  Google Scholar 

  27. Witherell GW, Wu HN, Uhlenbeck OC (1990) Cooperative binding of R17 coat protein to RNA. Biochemistry 29(50):11051–11057

    Article  CAS  Google Scholar 

  28. Azizi H, Dumas C, Papadopoulou B (2017) The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in Leishmania. RNA 23(12):1874–1885

    Article  CAS  Google Scholar 

  29. Quenault T, Lithgow T, Traven A (2011) PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21(2):104–112

    Article  CAS  Google Scholar 

  30. Peabody DS, Lim F (1996) Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic Acids Res 24(12):2352–2359

    Article  CAS  Google Scholar 

  31. Schimanski B, Nguyen TN, Gunzl A (2005) Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4(11):1942–1950

    Article  CAS  Google Scholar 

  32. Wu B, Chao JA, Singer RH (2012) Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys J 102(12):2936–2944

    Article  CAS  Google Scholar 

  33. Johansson HE, Liljas L, Uhlenbeck OC (1997) RNA recognition by the MS2 phage coat protein. Semin Virol 8:176

    Article  CAS  Google Scholar 

  34. Dertinger D, Dale T, Uhlenbeck OC (2001) Modifying the specificity of an RNA backbone contact. J Mol Biol 314(4):649–654

    Article  CAS  Google Scholar 

  35. Sei E, Conrad NK (2014) UV cross-linking of interacting RNA and protein in cultured cells. Methods Enzymol 539:53–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research Grant MOP-12182 awarded to B.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Papadopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Azizi, H., Papadopoulou, B. (2020). In Vivo Tethering System to Isolate RNA-Binding Proteins Regulating mRNA Decay in Leishmania. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics