Skip to main content

Overview of Experimental Methods and Study Design in Metabolomics, and Statistical and Pathway Considerations

  • Protocol
  • First Online:
Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

Metabolomics has become a powerful tool in biological and clinical investigations. This chapter reviews the technological basis of metabolomics and the considerations in answering biomedical questions. The workflow of metabolomics is explained in the sequence of data processing, quality control, metabolite annotation, statistical analysis, pathway analysis, and multi-omics integration. Reproducibility in both sample analysis and data analysis is key to the scientific progress, and the recommendation is made on reporting standards in publications. This chapter explains the technical aspects of metabolomics in the context of systems biology and applications to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 193:280–295

    Article  CAS  PubMed  Google Scholar 

  2. Want EJ, Cravatt BF, Siuzdak G (2005) The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6(11):1941–1951. https://doi.org/10.1002/cbic.200500151

    Article  CAS  PubMed  Google Scholar 

  3. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, Engler J, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK (2016) Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J Mass Spectrom 51(7):461–475. https://doi.org/10.1002/jms.3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  5. Craig R, Cortens JC, Fenyo D, Beavis RC (2006) Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res 5(8):1843–1849. https://doi.org/10.1021/pr0602085

    Article  CAS  PubMed  Google Scholar 

  6. Huttlin EL, Hegeman AD, Harms AC, Sussman MR (2007) Prediction of error associated with false-positive rate determination for peptide identification in large-scale proteomics experiments using a combined reverse and forward peptide sequence database strategy. J Proteome Res 6(1):392–398. https://doi.org/10.1021/pr0603194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nesvizhskii AI (2007) Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367:87–119. https://doi.org/10.1385/1-59745-275-0:87

    Article  CAS  PubMed  Google Scholar 

  8. Anjo SI, Santa C, Manadas B (2017) SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics 17(3–4). https://doi.org/10.1002/pmic.201600278

    Article  Google Scholar 

  9. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20(6):353–367. https://doi.org/10.1038/s41580-019-0108-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Collins FS (2004) The case for a US prospective cohort study of genes and environment. Nature 429(6990):475–477. https://doi.org/10.1038/nature02628

    Article  CAS  PubMed  Google Scholar 

  12. Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, Ritchie M, Schmitt C, Sarigiannis DA, Thomas DC, Wishart D, Balshaw DM, Patel CJ (2017) Informatics and data analytics to support exposome-based discovery for public health. Annu Rev Public Health 38:279–294. https://doi.org/10.1146/annurev-publhealth-082516-012737

    Article  PubMed  Google Scholar 

  13. Li S, Cirillo P, Hu X, Tran V, Krigbaum N, Yu S, Jones DP, Cohn B (2019) Understanding mixed environmental exposures using metabolomics via a hierarchical community network model in a cohort of California women in 1960’s. Reprod Toxicol. pii: S0890-6238(18)30603-8. https://doi.org/10.1016/j.reprotox.2019.06.013

  14. Stolz A, Jooss K, Hocker O, Romer J, Schlecht J, Neususs C (2019) Recent advances in capillary electrophoresis-mass spectrometry: instrumentation, methodology and applications. Electrophoresis 40(1):79–112. https://doi.org/10.1002/elps.201800331

    Article  CAS  PubMed  Google Scholar 

  15. Onjiko RM, Portero EP, Moody SA, Nemes P (2017) In situ microprobe single-cell capillary electrophoresis mass spectrometry: metabolic reorganization in single differentiating cells in the live vertebrate (Xenopus laevis) embryo. Anal Chem 89(13):7069–7076. https://doi.org/10.1021/acs.analchem.7b00880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Members MSIB, Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N, Nikolau B, Robertson D, Sumner LW, Taylor C, van der Werf M, van Ommen B, Fiehn O (2007) The metabolomics standards initiative. Nat Biotechnol 25(8):846–848. https://doi.org/10.1038/nbt0807-846b

    Article  CAS  Google Scholar 

  17. Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB (2013) The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2(1):13. https://doi.org/10.1186/2047-217X-2-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3(3):211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48(4):2097–2098. https://doi.org/10.1021/es5002105

    Article  CAS  PubMed  Google Scholar 

  20. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom 27(12):1897–1905. https://doi.org/10.1007/s13361-016-1469-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9(7):e1003123. https://doi.org/10.1371/journal.pcbi.1003123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakayasu ES, Nicora CD, Sims AC, Burnum-Johnson KE, Kim YM, Kyle JE, Matzke MM, Shukla AK, Chu RK, Schepmoes AA, Jacobs JM, Baric RS, Webb-Robertson BJ, Smith RD, Metz TO (2016) MPLEx: a robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses. mSystems 1(3). https://doi.org/10.1128/mSystems.00043-16

  24. Guo L, Milburn MV, Ryals JA, Lonergan SC, Mitchell MW, Wulff JE, Alexander DC, Evans AM, Bridgewater B, Miller L, Gonzalez-Garay ML, Caskey CT (2015) Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci U S A 112(35):E4901–E4910. https://doi.org/10.1073/pnas.1508425112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barnes, S. (2020). Overview of Experimental Methods and Study Design in Metabolomics, and Statistical and Pathway Considerations. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics