Skip to main content

Peptide and Pseudopeptide Bond Synthesis in Phosphorus Dipeptide Analogs

  • Protocol
  • First Online:
Peptide Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2103))

Abstract

Peptide analogs modified with a phosphorus-based moiety (phosphonate, phosphonamidate, or phosphinate) have emerged as invaluable tools in fundamental and medicinal, mechanistic, and inhibitory studies of proteolytic enzymes and other catalytic proteins that process the amino acids and peptides. The first stages of the chemical synthesis of these compounds frequently involve formation of peptide or pseudopeptide bond between a suitably protected α-amino acid and an α-aminoalkyl phosphorus derivative. These preparative protocols are distinct from conventional solution and solid-phase peptide syntheses that have become routine and automatized. In the following chapter, we describe in details the methods and techniques utilized to perform this nonstandard coupling and to obtain P-terminal dipeptidyl phosphonates and pseudodipeptides containing the internal phosphonamidate or phosphinate linkages. Methods of products’ purification, the deprotection conditions, and stability issues are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukhar VP, Hudson HR (eds) (2000) Aminophosphonic and aminophosphinic acids. Chemistry and biological activity. Wiley, Chichester

    Google Scholar 

  2. Mucha A, Kafarski P, Berlicki Ł (2011) Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 54:5955–5980. https://doi.org/10.1021/jm200587f

    Article  CAS  PubMed  Google Scholar 

  3. Matthews BW (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 21:333–340. https://doi.org/10.1021/ar00153a003

    Article  CAS  Google Scholar 

  4. Yiotakis A, Georgiadis D, Matziari M, Makaritis A, Dive V (2004) Phosphinic peptides: synthetic approaches and biochemical evaluation as Zn-metalloprotease inhibitors. Curr Org Chem 8:1135–1158. https://doi.org/10.2174/1385272043370177

    Article  CAS  Google Scholar 

  5. Georgiadis D, Dive V (2015) Phosphinic peptides as potent inhibitors of zinc-metalloproteases. Top Curr Chem 360:1–38. https://doi.org/10.1007/128_2014_571

    Article  CAS  PubMed  Google Scholar 

  6. Sieńczyk M, Oleksyszyn J (2009) Irreversible inhibition of serine proteases—design and in vivo activity of diaryl alpha-aminophosphonate derivatives. Curr Med Chem 16:1673–1687. https://doi.org/10.2174/092986709788186246

    Article  PubMed  Google Scholar 

  7. Grzywa R, Sieńczyk M (2013) Phosphonic esters and their application of protease control. Curr Pharm Des 19:1154–1178. https://doi.org/10.2174/1381612811319060014

    Article  CAS  PubMed  Google Scholar 

  8. Kabachnik MI, Medved TY (1952) New synthesis of aminophosphonic acids. Dokl Akad Nauk SSSR 83:689–692

    CAS  Google Scholar 

  9. Ryglowski A, Kafarski P (1994) The facile synthesis of dialkyl 1-aminoalkylphosphonates. Synth Commun 24:2725–2731. https://doi.org/10.1080/00397919408010588

    Article  CAS  Google Scholar 

  10. Kowalik J, Kupczyk-Subotkowska L, Mastalerz P (1981) Preparation of dialkyl 1-aminoalkanephosphonates by reduction of dialkyl 1-hydroxyiminoalkanephosphonates with zinc in formic acid. Synthesis 1981:57–58. https://doi.org/10.1055/s-1981-29336

    Article  Google Scholar 

  11. Oleksyszyn J, Subotkowska L, Mastalerz P (1979) Diphenyl 1-aminoalkanephosphonates. Synthesis 1979:985–986. https://doi.org/10.1055/s-1979-28903

    Article  Google Scholar 

  12. Gilmore WF, McBride MA (1974) Synthesis of peptides containing aminophosphonic acids. J Pharm Sci 63:1087–1090. https://doi.org/10.1002/jps.2600630711

    Article  CAS  PubMed  Google Scholar 

  13. Kafarski P, Lejczak B (1989) Mixed carboxylic-carbonic anhydride method in phosphono peptide synthesis. Tetrahedron 45:7387–7396. https://doi.org/10.1016/S0040-4020(01)89200-0

    Article  CAS  Google Scholar 

  14. Lejczak B, Kafarski P, Szewczyk J (1982) Transesterification of diphenyl phosphonates using potassium fluoride/crown ether/alcohol system. Part 2. The use of diphenyl 1-aminoalkanephosphonates in phosphonopeptide synthesis. Synthesis 1982:412–414. https://doi.org/10.1055/s-1982-29818

    Article  Google Scholar 

  15. Kafarski P, Soroka M, Lejczak B (1988) Synthesis of phosphono peptides from free aminophosphonic acids. In: Shiba T, Sakakibara S (eds) Peptide chemistry 1987, proceedings of the 25th Japanese peptide symposium. Protein Research Foundation, Osaka, pp 307–310

    Google Scholar 

  16. Yamauchi K, Kinoshita M, Imoto M (1972) Peptides containing aminophosphonic acids. I. Reactivity of α-aminobenzylphosphonic acid. Bull Chem Soc Jpn 45:2528–2531. https://doi.org/10.1246/bcsj.45.2528

    Article  CAS  Google Scholar 

  17. Jacobsen NE, Bartlett PA (1981) A phosphonamidate dipeptide analog as an inhibitor of carboxypeptidase A. J Am Chem Soc 103:654–657. https://doi.org/10.1021/ja00393a026

    Article  CAS  Google Scholar 

  18. Sampson NS, Bartlett PA (1988) Synthesis of phosphonic acid derivatives by oxidative activation of phosphinate esters. J Org Chem 53:4500–4503. https://doi.org/10.1021/jo00254a015

    Article  CAS  Google Scholar 

  19. Mucha A, Grembecka J, Cierpicki T, Kafarski P (2003) Hydrolysis of the phosphonamidate bond in phosphono dipeptide analogues—the influence of the nature of the N-terminal functional group. Eur J Org Chem 2003:4797–4803. https://doi.org/10.1002/ejoc.200300469

    Article  CAS  Google Scholar 

  20. Mucha A (2012) Synthesis and modifications of phosphinic dipeptide analogues. Molecules 17:13530–13568. https://doi.org/10.3390/molecules171113530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thottathil JK, Ryono DE, Przybyla CA, Moniot JL, Neubeck R (1984) Preparation of phosphinic acids: Michael additions of phosphonous acids/esters to conjugated systems. Tetrahedron Lett 25:4741–4744. https://doi.org/10.1016/S0040-4039(01)81507-0

    Article  CAS  Google Scholar 

  22. Parsons WH, Patchett AA, Bull HG et al (1988) Phosphinic acid inhibitors of d-alanyl-d-alanine ligase. J Med Chem 31:1772–1778. https://doi.org/10.1021/jm00117a017

    Article  CAS  PubMed  Google Scholar 

  23. Chen S, Coward JK (1996) A general method for the synthesis of N-protected α-aminophosphinic acids. Tetrahedron Lett 37:4335–4338. https://doi.org/10.1016/0040-4039(96)00839-8

    Article  CAS  Google Scholar 

  24. Yiotakis A, Vassiliou S, Jirácek J, Dive V (1996) Protection of the hydroxyphosphinyl function of phosphinic dipeptides by adamantyl. Application to the solid-phase synthesis of phosphinic peptides. J Org Chem 61:6601–6605

    Article  CAS  Google Scholar 

  25. Vo-Quang Y, Gravey AM, Simonneau R et al (1987) Towards new inhibitors of d-alanine:d-alanine ligase: the synthesis of 3-amino butenylphosphonic and aminophosphonamidic acids. Tetrahedron Lett 28:6167–6170. https://doi.org/10.1016/S0040-4039(00)61837-3

    Article  Google Scholar 

  26. Grembecka J, Mucha A, Cierpicki T, Kafarski P (2003) The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. J Med Chem 46:2641–2655. https://doi.org/10.1021/jm030795v

    Article  CAS  PubMed  Google Scholar 

  27. Szewczyk J, Lejczak B, Kafarski P (1982) Transesterification of diphenyl phosphonates using the potassium fluoride/crown ether/alcohol system. Part 1. Transesterification of diphenyl 1-(benzyloxycarbonylamino)-alkanephosphonates. Synthesis 1982:409–412. https://doi.org/10.1055/s-1982-29817

    Article  Google Scholar 

  28. Mucha A, Kafarski P (2002) Transesterification of monophenyl phosphonamidates—chemical modelling of serine protease inhibition. Tetrahedron 58:5855–5863. https://doi.org/10.1016/S0040-4020(02)00561-6

    Article  CAS  Google Scholar 

  29. Baylis EK, Campbell CD, Dingwall JG (1984) 1-Aminoalkylphosphonous acids. Part 1. Isosteres of the protein amino acids. J Chem Soc Perkin Trans 1:2845–2853. https://doi.org/10.1039/P19840002845

    Article  Google Scholar 

  30. Stetter H, Kuhlmann H (1979) Eine einfache Herstellung von α-Alkylacrylsäure-estern. Synthesis 1979:29–30. https://doi.org/10.1055/s-1979-28537

    Article  Google Scholar 

  31. Hirschmann R, Yager KM, Taylor CM et al (1997) Phosphonate diester and phosphonamide synthesis. Reaction coordinate analysis by 31P NMR spectroscopy: identification of phyrophosphonate anhydrides and highly reactive phosphonylammonium salts. J Am Chem Soc 119:8177–8190. https://doi.org/10.1021/ja962465o

    Article  CAS  Google Scholar 

  32. Vassiliou S, Mucha A, Cuniasse P et al (1999) Phosphinic pseudo-tripeptides as potent inhibitors of matrix metalloproteinases: a structure-activity study. J Med Chem 42:2610–2620. https://doi.org/10.1021/jm9900164

    Article  CAS  PubMed  Google Scholar 

  33. Vassiliou S, Węglarz-Tomczak E, Berlicki Ł et al (2014) Structure-guided, single-point modifications in the phosphinic dipeptide structure yield highly potent and selective inhibitors of neutral aminopeptidases. J Med Chem 57:8140–8151. https://doi.org/10.1021/jm501071f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Mucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mucha, A., Kafarski, P. (2020). Peptide and Pseudopeptide Bond Synthesis in Phosphorus Dipeptide Analogs. In: Hussein, W., Skwarczynski, M., Toth, I. (eds) Peptide Synthesis. Methods in Molecular Biology, vol 2103. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0227-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0227-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0226-3

  • Online ISBN: 978-1-0716-0227-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics