Skip to main content

Analysis of RNA Sequencing Data Using CLC Genomics Workbench

  • Protocol
  • First Online:
Book cover Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2102))

Abstract

RNA sequencing (RNA-seq) is a recently developed approach to perform transcriptome profiling using next-generation sequencing (NGS) technologies. Studies have shown that RNA-seq provides accurate measurement of transcript levels as well as their isoforms, which is useful to address complex transcriptomes. In addition, the increasing publicly available sequencing datasets and decreasing sequencing cost promote the use of RNA-seq for hypothesis-generating studies. In this chapter, we demonstrate how to analyze RNA-seq data and generate interpretable results using CLC genomic workbench software and perform the downstream pathway analysis using ingenuity pathway analysis (IPA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Hal NL, Vorst O, van Houwelingen AM, Kok EJ, Peijnenburg A, Aharoni A, van Tunen AJ, Keijer J (2000) The application of DNA microarrays in gene expression analysis. J Biotechnol 78(3):271–280

    Article  PubMed  Google Scholar 

  3. Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 7:276. https://doi.org/10.1186/1471-2105-7-276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35(15):e99. https://doi.org/10.1093/nar/gkm549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98. https://doi.org/10.1038/nrg2934

    Article  CAS  PubMed  Google Scholar 

  6. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW (2016) Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17(5):257–271. https://doi.org/10.1038/nrg.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  8. Koch CM, Chiu SF, Akbarpour M, Bharat A, Ridge KM, Bartom ET, Winter DR (2018) A Beginner’s guide to analysis of RNA sequencing data. Am J Respir Cell Mol Biol 59(2):145–157. https://doi.org/10.1165/rcmb.2017-0430TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. https://www.qiagenbioinformatics.com/blog/discovery/lasting-expressions/

  10. https://www.qiagenbioinformatics.com/products/clc-genomics-workbench

  11. https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/insightful/

  12. https://www.qiagenbioinformatics.com/products/features/

  13. http://qiagen.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA1D0000000PIpcKAG

  14. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CLC Genomics Workbench and IPA software licensed through the Molecular Biology Information Service of the Health Sciences Library System, University of Pittsburgh, were used for data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Peter Di .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, CH., Di, Y.P. (2020). Analysis of RNA Sequencing Data Using CLC Genomics Workbench. In: Keohavong, P., Singh, K., Gao, W. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 2102. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0223-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0223-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0222-5

  • Online ISBN: 978-1-0716-0223-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics