Skip to main content

NMR of Immobilized Enzymes

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2100))

Abstract

Solid-state NMR has become the method of choice for the assessment of protein structure for insoluble objects lacking long-range order. In this context, it is apparent that solid-state NMR is also perfectly poised toward the characterization of immobilized proteins. For these systems, it is possible to understand at the atomic level which perturbations, if any, are occurring as a result of the functionalization. Here we describe how it is possible to accomplish the NMR characterization of enzymes that have been immobilized through different approaches, and we introduce the reader to the choice of the experimental strategy that can be useful in different cases. An outlook on the level of information that can be attained is also given, in view of recent methodological advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  2. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, London

    Google Scholar 

  3. Bertini I, McGreevy KS, Parigi G (2012) NMR in systems biology. Wiley, Hoboken, NJ

    Google Scholar 

  4. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659–1659

    Article  CAS  Google Scholar 

  5. Laage S, Sachleben J, Steuernagel S et al (2008) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J Magn Reson 196:133–141

    Article  Google Scholar 

  6. Barbet-Massin E, Pell AJ, Retel JS et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497. https://doi.org/10.1021/ja507382j

    Article  CAS  Google Scholar 

  7. Ravera E, Martelli T, Geiger Y et al (2016) Biosilica and bioinspired silica studied by solid-state NMR. Coord Chem Rev 327–328:110–122. https://doi.org/10.1016/j.ccr.2016.06.003

    Article  CAS  Google Scholar 

  8. iNEXT Consortium (2018) iNEXT: a European facility network to stimulate translational structural biology. FEBS Lett 592:1909–1917. https://doi.org/10.1002/1873-3468.13062

    Article  CAS  Google Scholar 

  9. Kennedy SD, Bryant RG (1990) Structural effects of hydration: Studies of lysozyme by 13C solids nmr. Biopolymers 29:1801–1806. https://doi.org/10.1002/bip.360291411

    Article  CAS  PubMed  Google Scholar 

  10. Pauli J, van Rossum B, Förster H et al (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the α-spectrin SH3 domain. J Magn Reson 143:411–416. https://doi.org/10.1006/jmre.2000.2029

    Article  CAS  PubMed  Google Scholar 

  11. Fragai M, Luchinat C, Parigi G, Ravera E (2013) Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57:155–166. https://doi.org/10.1007/s10858-013-9776-0

    Article  CAS  PubMed  Google Scholar 

  12. Böckmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Article  Google Scholar 

  13. Bertini I, Engelke F, Gonnelli L et al (2012) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54:123–127

    Article  CAS  Google Scholar 

  14. Mandal A, Boatz JC, Wheeler TB, van der Wel PCA (2017) On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. J Biomol NMR 67:165–178. https://doi.org/10.1007/s10858-017-0089-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi T, Nishiyama Y, Pruski M (2018) Chapter 1. Heteronuclear correlation solid-state NMR spectroscopy with indirect detection under fast magic-angle Spinning. In: Hodgkinson P (ed) New developments in NMR. Royal Society of Chemistry, Cambridge, pp 1–38

    Google Scholar 

  16. Schuetz A, Wasmer C, Habenstein B et al (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227). Chembiochem 11:1543–1551. https://doi.org/10.1002/cbic.201000124

    Article  CAS  PubMed  Google Scholar 

  17. Martelli T, Ravera E, Louka A et al (2016) Atomic level quality assessment of enzymes encapsulated in bio-inspired silica. Chem Eur J 4:425–432

    Article  Google Scholar 

  18. Varghese S, Halling PJ, Häussinger D, Wimperis S (2016) High-resolution structural characterization of a heterogeneous biocatalyst using solid-state NMR. J Phys Chem C 120:28717–28726. https://doi.org/10.1021/acs.jpcc.6b11575

    Article  CAS  Google Scholar 

  19. McNeill SA, Gor’kov PL, Struppe J et al (2007) Optimizing ssNMR experiments for dilute proteins in heterogeneous mixtures at high magnetic fields. Magn Reson Chem 45:S209–S220. https://doi.org/10.1002/mrc.2146

    Article  CAS  PubMed  Google Scholar 

  20. Stringer JA, Bronnimann CE, Mullen CG et al (2005) Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173:40–48. https://doi.org/10.1016/j.jmr.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  21. McNeill SA, Gor’kov PL, Shetty K et al (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197:135–144. https://doi.org/10.1016/j.jmr.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  22. Ravera E, Ciambellotti S, Cerofolini L et al (2016) Solid-state NMR of PEGylated proteins. Angew Chem Int Ed 55:2446–2449. https://doi.org/10.1002/anie.201510148

    Article  CAS  Google Scholar 

  23. Cerofolini L, Giuntini S, Carlon A et al (2018) Characterization of PEGylated Asparaginase: new opportunities from NMR analysis of large PEGylated therapeutics. Chem Eur J 25:1984–1991. https://doi.org/10.1002/chem.201804488

    Article  CAS  Google Scholar 

  24. Cavanagh J, Fairbrother WJ, Palmer AGIII et al (2007) Protein NMR spectroscopy. Principles and practice. Academic Press, SanDiego

    Google Scholar 

  25. Lesage A, Gardiennet C, Loquet A et al (2008) Polarization transfer over the water–protein interface in solids. Angew Chem Int Ed 47:5851–5854. https://doi.org/10.1002/anie.200801110

    Article  CAS  Google Scholar 

  26. Loening NM, Bjerring M, Nielsen NC, Oschkinat H (2012) A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. J Magn Reson 214:81–90

    Article  CAS  Google Scholar 

  27. Nielsen AB, Jain S, Ernst M et al (2013) Adiabatic rotor-echo-short-pulse-irradiation mediated cross-polarization. J Magn Reson 237:147–151. https://doi.org/10.1016/j.jmr.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  28. Fauré NE, Halling PJ, Wimperis S (2014) A solid-state NMR study of the immobilization of α-Chymotrypsin on Mesoporous Silica. J Phys Chem C 118:1042–1048. https://doi.org/10.1021/jp4098414

    Article  CAS  Google Scholar 

  29. Brückner SI, Donets S, Dianat A et al (2016) Probing silica–biomolecule interactions by solid-state NMR and molecular dynamics simulations. Langmuir 32:11698–11705. https://doi.org/10.1021/acs.langmuir.6b03311

    Article  CAS  PubMed  Google Scholar 

  30. Geiger Y, Gottlieb HE, Akbey Ü et al (2016) Studying the conformation of a silaffin-derived pentalysine peptide embedded in bioinspired silica using solution and dynamic nuclear polarization magic-angle spinning NMR. J Am Chem Soc 138:5561–5567. https://doi.org/10.1021/jacs.5b07809

    Article  CAS  PubMed  Google Scholar 

  31. Adiram-Filiba N, Schremer A, Ohaion E et al (2017) Ubiquitin immobilized on mesoporous MCM41 silica surfaces—analysis by solid-state NMR with biophysical and surface characterization. Biointerphases 12:02D414. https://doi.org/10.1116/1.4983273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Louka A, Matlahov I, Giuntini S et al (2018) Engineering l-asparaginase for spontaneous formation of calcium phosphate bioinspired microreactors. Phys Chem Chem Phys 20:12719–12726. https://doi.org/10.1039/c8cp00419f

    Article  CAS  PubMed  Google Scholar 

  33. Bleaney BI, Bleaney B (1976) Electricity and magnetism. Oxford University Press, Oxford

    Google Scholar 

  34. Varghese S, Halling PJ, Häussinger D, Wimperis S (2018) Two-dimensional 1H and 1H-detected NMR study of a heterogeneous biocatalyst using fast MAS at high magnetic fields. Solid State Nucl Magn Reson 92:7–11. https://doi.org/10.1016/j.ssnmr.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  35. Webb AG (1997) Radiofrequency microcoils in magnetic resonance. J Magn Reson 31:1–42. https://doi.org/10.1016/S0079-6565(97)00004-6

    Article  CAS  Google Scholar 

  36. Pines A, Gibby MG, Waugh JS (1973) Proton enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  CAS  Google Scholar 

  37. Marks D, Vega S (1996) J Magn Reson Ser A 118:157–172

    Article  CAS  Google Scholar 

  38. Fragai M, Luchinat C, Martelli T et al (2013) SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem Commun 50:421–423. https://doi.org/10.1039/C3CC46896H

    Article  Google Scholar 

  39. Cerofolini L, Giuntini S, Louka A et al (2017) High-resolution solid-state NMR characterization of ligand binding to a protein immobilized in a silica matrix. J Phys Chem B 121:8094–8101. https://doi.org/10.1021/acs.jpcb.7b05679

    Article  CAS  PubMed  Google Scholar 

  40. Balayssac S, Bertini I, Falber K et al (2007) Solid-state NMR of matrix metalloproteinase 12: an approach complementary to solution NMR. Chembiochem 8:486–489

    Article  CAS  Google Scholar 

  41. Giuntini S, Cerofolini L, Ravera E et al (2017) Atomic structural details of a protein grafted onto gold nanoparticles. Sci Rep 7:17934. https://doi.org/10.1038/s41598-017-18109-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ravera E, Cerofolini L, Martelli T et al (2016) 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization. Sci Rep 6:27851

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Venita Decker and Dr. Sebastian Wegner (Bruker Biospin), and Dr. Yusuke Nishiyiama (JEOL) are acknowledged for providing the instructions for operating low-diameter rotors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Ravera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cerofolini, L., Ravera, E., Fragai, M., Luchinat, C. (2020). NMR of Immobilized Enzymes. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics