Skip to main content

An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brady SW, McQuerry JA, Qiao Y, Piccolo SR, Shrestha G, Jenkins DF, Layer RM, Pedersen BS, Miller RH, Esch A, Selitsky SR, Parker JS, Anderson LA, Dalley BK, Factor RE, Reddy CB, Boltax JP, Li DY, Moos PJ, Gray JW, Heiser LM, Buys SS, Cohen AL, Johnson WE, Quinlan AR, Marth G, Werner TL, Bild AH (2017) Combating subclonal evolution of resistant cancer phenotypes. Nat Commun 8(1):1231. https://doi.org/10.1038/s41467-017-01174-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuipers J, Jahn K, Raphael BJ, Beerenwinkel N (2017) Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res 27(11):1885–1894. https://doi.org/10.1101/gr.220707.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valkenburg KC, de Groot AE, Pienta KJ (2018) Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 15(6):366–381. https://doi.org/10.1038/s41571-018-0007-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, Giovannucci E, Dranoff G, Fuchs CS, Ogino S (2010) Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 222(4):350–366. https://doi.org/10.1002/path.2774

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666. https://doi.org/10.1056/NEJMoa051424

    Article  CAS  PubMed  Google Scholar 

  6. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. https://doi.org/10.1038/ni.2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287. https://doi.org/10.1038/nrc3236

    Article  CAS  PubMed  Google Scholar 

  8. Nimmerjahn F, Ravetch JV (2007) Antibodies, Fc receptors and cancer. Curr Opin Immunol 19(2):239–245. https://doi.org/10.1016/j.coi.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  9. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu RB, Engels B, Arina A, Schreiber K, Hyjek E, Schietinger A, Binder DC, Butz E, Krausz T, Rowley DA, Jabri B, Schreiber H (2012) Densely granulated murine NK cells eradicate large solid tumors. Cancer Res 72(8):1964–1974. https://doi.org/10.1158/0008-5472.CAN-11-3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2(3):175–184. https://doi.org/10.1038/nri748

    Article  CAS  PubMed  Google Scholar 

  12. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86. https://doi.org/10.1038/nri3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garrido F (2019) MHC/HLA class I loss in cancer cells. Adv Exp Med Biol 1151:15–78. https://doi.org/10.1007/978-3-030-17864-2_2

    Article  PubMed  Google Scholar 

  14. Golstein P, Griffiths GM (2018) An early history of T cell-mediated cytotoxicity. Nat Rev Immunol 18(8):527–535. https://doi.org/10.1038/s41577-018-0009-3

    Article  CAS  PubMed  Google Scholar 

  15. Whitmire JK, Eam B, Benning N, Whitton JL (2007) Direct interferon-gamma signaling dramatically enhances CD4+ and CD8+ T cell memory. J Immunol 179(2):1190–1197. https://doi.org/10.4049/jimmunol.179.2.1190

    Article  CAS  PubMed  Google Scholar 

  16. Reading JL, Galvez-Cancino F, Swanton C, Lladser A, Peggs KS, Quezada SA (2018) The function and dysfunction of memory CD8(+) T cells in tumor immunity. Immunol Rev 283(1):194–212. https://doi.org/10.1111/imr.12657

    Article  CAS  PubMed  Google Scholar 

  17. Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T, Wu A (2014) Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110(10):2560–2568. https://doi.org/10.1038/bjc.2014.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang JC, Rosenberg SA (2016) Adoptive T-cell therapy for cancer. Adv Immunol 130:279–294. https://doi.org/10.1016/bs.ai.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. https://doi.org/10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  20. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206(8):1717–1725. https://doi.org/10.1084/jem.20082492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138. https://doi.org/10.1084/jem.20080099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Speiser DE, Ho PC, Verdeil G (2016) Regulatory circuits of T cell function in cancer. Nat Rev Immunol 16(10):599–611. https://doi.org/10.1038/nri.2016.80

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218

    CAS  PubMed  Google Scholar 

  24. Dai Y, Jiao H, Teng G, Wang W, Zhang R, Wang Y, Hebbard L, George J, Qiao L (2014) Embelin reduces colitis-associated tumorigenesis through limiting IL-6/STAT3 signaling. Mol Cancer Ther 13(5):1206–1216. https://doi.org/10.1158/1535-7163.MCT-13-0378

    Article  CAS  PubMed  Google Scholar 

  25. Lanca T, Silva-Santos B (2012) The split nature of tumor-infiltrating leukocytes: implications for cancer surveillance and immunotherapy. Oncoimmunology 1(5):717–725. https://doi.org/10.4161/onci.20068

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, Stenvold H, Camps C, Busund LT (2011) The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 6(4):824–833. https://doi.org/10.1097/JTO.0b013e3182037b76

    Article  PubMed  Google Scholar 

  27. Fialova A, Partlova S, Sojka L, Hromadkova H, Brtnicky T, Fucikova J, Kocian P, Rob L, Bartunkova J, Spisek R (2013) Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int J Cancer 132(5):1070–1079. https://doi.org/10.1002/ijc.27759

    Article  CAS  PubMed  Google Scholar 

  28. Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 236(5):567–579. https://doi.org/10.1258/ebm.2011.011007

    Article  CAS  Google Scholar 

  29. Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM (2014) Th17 cells in cancer: the ultimate identity crisis. Front Immunol 5:276. https://doi.org/10.3389/fimmu.2014.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365. https://doi.org/10.1126/science.aar6711

    Article  CAS  PubMed  Google Scholar 

  31. Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, McCarter MD, Palmer BE, Kern JA, Slansky JE (2017) Antigen-presenting intratumoral B cells affect CD4(+) TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol Res 5(10):898–907. https://doi.org/10.1158/2326-6066.CIR-17-0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiaruttini G, Mele S, Opzoomer J, Crescioli S, Ilieva KM, Lacy KE, Karagiannis SN (2017) B cells and the humoral response in melanoma: the overlooked players of the tumor microenvironment. Oncoimmunology 6(4):e1294296. https://doi.org/10.1080/2162402X.2017.1294296

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dong HP, Elstrand MB, Holth A, Silins I, Berner A, Trope CG, Davidson B, Risberg B (2006) NK- and B-cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol 125(3):451–458

    Article  PubMed  Google Scholar 

  34. Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W, Hoon DS, Wakabayashi M, Forman S, Yu H (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 8(5):e64159. https://doi.org/10.1371/journal.pone.0064159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santoiemma PP, Reyes C, Wang LP, McLane MW, Feldman MD, Tanyi JL, Powell DJ Jr (2016) Systematic evaluation of multiple immune markers reveals prognostic factors in ovarian cancer. Gynecol Oncol 143(1):120–127. https://doi.org/10.1016/j.ygyno.2016.07.105

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18(12):3281–3292. https://doi.org/10.1158/1078-0432.CCR-12-0234

    Article  CAS  PubMed  Google Scholar 

  37. Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, Bohm S, Dowe T, Wilkes EH, Chakravarty P, Thompson R, Topping J, Cutillas PR, Lockley M, Serody JS, Capasso M, Balkwill FR (2017) A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin Cancer Res 23(1):250–262. https://doi.org/10.1158/1078-0432.CCR-16-0081

    Article  CAS  PubMed  Google Scholar 

  38. Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 4(7):e6412. https://doi.org/10.1371/journal.pone.0006412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kroeger DR, Milne K, Nelson BH (2016) Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res 22(12):3005–3015. https://doi.org/10.1158/1078-0432.CCR-15-2762

    Article  CAS  PubMed  Google Scholar 

  40. Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14(8):662–674. https://doi.org/10.1038/cmi.2017.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fortner RT, Damms-Machado A, Kaaks R (2017) Systematic review: tumor-associated antigen autoantibodies and ovarian cancer early detection. Gynecol Oncol 147(2):465–480. https://doi.org/10.1016/j.ygyno.2017.07.138

    Article  CAS  PubMed  Google Scholar 

  42. Cohen M, Petignat P (2011) Purified autoantibodies against glucose-regulated protein 78 (GRP78) promote apoptosis and decrease invasiveness of ovarian cancer cells. Cancer Lett 309(1):104–109. https://doi.org/10.1016/j.canlet.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  43. Van Belle K, Herman J, Boon L, Waer M, Sprangers B, Louat T (2016) Comparative in vitro immune stimulation analysis of primary human B cells and B cell lines. J Immunol Res 5281823:2016. https://doi.org/10.1155/2016/5281823

    Article  CAS  Google Scholar 

  44. Renshaw BR, Fanslow WC 3rd, Armitage RJ, Campbell KA, Liggitt D, Wright B, Davison BL, Maliszewski CR (1994) Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 180(5):1889–1900. https://doi.org/10.1084/jem.180.5.1889

    Article  CAS  PubMed  Google Scholar 

  45. Kornbluth RS, Stempniak M, Stone GW (2012) Design of CD40 agonists and their use in growing B cells for cancer immunotherapy. Int Rev Immunol 31(4):279–288. https://doi.org/10.3109/08830185.2012.703272

    Article  CAS  PubMed  Google Scholar 

  46. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1(3):167–178

    Article  CAS  PubMed  Google Scholar 

  47. Danese S, Sans M, Fiocchi C (2004) The CD40/CD40L costimulatory pathway in inflammatory bowel disease. Gut 53(7):1035–1043. https://doi.org/10.1136/gut.2003.026278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark EA (2014) A short history of the B-cell-associated surface molecule CD40. Front Immunol 5:472. https://doi.org/10.3389/fimmu.2014.00472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Castigli E, Alt FW, Davidson L, Bottaro A, Mizoguchi E, Bhan AK, Geha RS (1994) CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci U S A 91(25):12135–12139. https://doi.org/10.1073/pnas.91.25.12135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sorenmo KU, Krick E, Coughlin CM, Overley B, Gregor TP, Vonderheide RH, Mason NJ (2011) CD40-activated B cell cancer vaccine improves second clinical remission and survival in privately owned dogs with non-Hodgkin’s lymphoma. PLoS One 6(8):e24167. https://doi.org/10.1371/journal.pone.0024167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu Y, Liu Y, Fu L, Zhai L, Zhu J, Han Y, Jiang Y, Zhang Y, Zhang P, Jiang Z, Zhang X, Cao X (2019) Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat Med 25(2):312–322. https://doi.org/10.1038/s41591-018-0309-y

    Article  CAS  PubMed  Google Scholar 

  52. Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM, Balkwill FR (2011) B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci U S A 108(26):10662–10667. https://doi.org/10.1073/pnas.1100994108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Moller P, Schrezenmeier H, Jahrsdorfer B (2013) Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res 73(8):2468–2479. https://doi.org/10.1158/0008-5472.CAN-12-3450

    Article  CAS  PubMed  Google Scholar 

  54. Schwartz M, Zhang Y, Rosenblatt JD (2016) B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer 4:40. https://doi.org/10.1186/s40425-016-0145-x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mion F, Tonon S, Valeri V, Pucillo CE (2017) Message in a bottle from the tumor microenvironment: tumor-educated DCs instruct B cells to participate in immunosuppression. Cell Mol Immunol 14(9):730–732. https://doi.org/10.1038/cmi.2017.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He Y, Qian H, Liu Y, Duan L, Li Y, Shi G (2014) The roles of regulatory B cells in cancer. J Immunol Res 2014:215471. https://doi.org/10.1155/2014/215471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang FZ, Chen DP, Zhao XY, Zhao Q, Li XF, Liu CL, Zheng L, Kuang DM (2016) PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 6(5):546–559. https://doi.org/10.1158/2159-8290.CD-15-1408

    Article  CAS  PubMed  Google Scholar 

  58. Wang X, Wang G, Wang Z, Liu B, Han N, Li J, Lu C, Liu X, Zhang Q, Yang Q, Wang G (2019) PD-1-expressing B cells suppress CD4(+) and CD8(+) T cells via PD-1/PD-L1-dependent pathway. Mol Immunol 109:20–26. https://doi.org/10.1016/j.molimm.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  59. Damsky W, Jilaveanu L, Turner N, Perry C, Zito C, Tomayko M, Leventhal J, Herold K, Meffre E, Bosenberg M, Kluger HM (2019) B cell depletion or absence does not impede anti-tumor activity of PD-1 inhibitors. J Immunother Cancer 7(1):153. https://doi.org/10.1186/s40425-019-0613-1

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Morgan R, Chen C, Cai Y, Clark E, Khan WN, Shin SU, Cho HM, Al Bayati A, Pimentel A, Rosenblatt JD (2016) Mammary-tumor-educated B cells acquire LAP/TGF-beta and PD-L1 expression and suppress anti-tumor immune responses. Int Immunol 28(9):423–433. https://doi.org/10.1093/intimm/dxw007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17(2):121–134. https://doi.org/10.1016/j.ccr.2009.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, Ma Y, Wiesen JF, Wong MH, Kulesz-Martin M, Irving B, Coussens LM (2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25(6):809–821. https://doi.org/10.1016/j.ccr.2014.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X, Wagner C, Hristova D, Zhang J, Tian T, Wei Z, Liu Q, Garg K, Griss J, Hards R, Maurer M, Hafner C, Mayerhofer M, Karanikas G, Jalili A, Bauer-Pohl V, Weihsengruber F, Rappersberger K, Koller J, Lang R, Hudgens C, Chen G, Tetzlaff M, Wu L, Frederick DT, Scolyer RA, Long GV, Damle M, Ellingsworth C, Grinman L, Choi H, Gavin BJ, Dunagin M, Raj A, Scholler N, Gross L, Beqiri M, Bennett K, Watson I, Schaider H, Davies MA, Wargo J, Czerniecki BJ, Schuchter L, Herlyn D, Flaherty K, Herlyn M, Wagner SN (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8(1):607. https://doi.org/10.1038/s41467-017-00452-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Woo SR, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474. https://doi.org/10.1146/annurev-immunol-032414-112043

    Article  CAS  PubMed  Google Scholar 

  65. Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35(1):23–28

    Article  PubMed  Google Scholar 

  66. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz J (2017) The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front Immunol 8:631. https://doi.org/10.3389/fimmu.2017.00631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Childs RW, Carlsten M (2015) Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 14(7):487–498. https://doi.org/10.1038/nrd4506

    Article  CAS  PubMed  Google Scholar 

  68. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5(12):1260–1265. https://doi.org/10.1038/ni1138

    Article  CAS  PubMed  Google Scholar 

  69. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002) Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 3(1):83–90. https://doi.org/10.1038/ni746

    Article  CAS  PubMed  Google Scholar 

  70. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057. https://doi.org/10.1182/blood-2004-07-2974

    Article  CAS  PubMed  Google Scholar 

  71. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100. https://doi.org/10.1126/science.1068440

    Article  CAS  PubMed  Google Scholar 

  72. Leong JW, Schneider SE, Sullivan RP, Parikh BA, Anthony BA, Singh A, Jewell BA, Schappe T, Wagner JA, Link DC, Yokoyama WM, Fehniger TA (2015) PTEN regulates natural killer cell trafficking in vivo. Proc Natl Acad Sci U S A 112(7):E700–E709. https://doi.org/10.1073/pnas.1413886112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY (2000) Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1(5):419–425. https://doi.org/10.1038/80859

    Article  CAS  PubMed  Google Scholar 

  74. Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL (2007) Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci U S A 104(15):6329–6334. https://doi.org/10.1073/pnas.0611655104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mellman I (2013) Dendritic cells: master regulators of the immune response. Cancer Immunol Res 1(3):145–149. https://doi.org/10.1158/2326-6066.CIR-13-0102

    Article  CAS  PubMed  Google Scholar 

  76. Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140(1):22–30. https://doi.org/10.1111/imm.12117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995. https://doi.org/10.1038/ni1112

    Article  CAS  PubMed  Google Scholar 

  78. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7(12):1250–1257. https://doi.org/10.1038/ni1412

    Article  CAS  PubMed  Google Scholar 

  79. Meylan E, Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22(5):561–569. https://doi.org/10.1016/j.molcel.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  80. Reis e Sousa C (2004) Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 16(1):21–25

    Article  CAS  PubMed  Google Scholar 

  81. Geijtenbeek TB, van Vliet SJ, Engering A, t Hart BA, van Kooyk Y (2004) Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22:33–54. https://doi.org/10.1146/annurev.immunol.22.012703.104558

    Article  CAS  PubMed  Google Scholar 

  82. Pierre P, Turley SJ, Gatti E, Hull M, Meltzer J, Mirza A, Inaba K, Steinman RM, Mellman I (1997) Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388(6644):787–792. https://doi.org/10.1038/42039

    Article  CAS  PubMed  Google Scholar 

  83. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388(6644):782–787. https://doi.org/10.1038/42030

    Article  CAS  PubMed  Google Scholar 

  84. Yanagihara S, Komura E, Nagafune J, Watarai H, Yamaguchi Y (1998) EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol 161(6):3096–3102

    CAS  PubMed  Google Scholar 

  85. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769. https://doi.org/10.1002/(SICI)1521-4141(199809)28:09<2760::AID-IMMU2760>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  86. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188(2):373–386. https://doi.org/10.1084/jem.188.2.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194(7):2985–2991. https://doi.org/10.4049/jimmunol.1403134

    Article  CAS  PubMed  Google Scholar 

  88. Batista FD, Harwood NE (2009) The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9(1):15–27. https://doi.org/10.1038/nri2454

    Article  CAS  PubMed  Google Scholar 

  89. Chijioke O, Munz C (2013) Dendritic cell derived cytokines in human natural killer cell differentiation and activation. Front Immunol 4:365. https://doi.org/10.3389/fimmu.2013.00365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin A, Schildknecht A, Nguyen LT, Ohashi PS (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127(2):77–84. https://doi.org/10.1016/j.imlet.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  91. Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Timar J (2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56(9):1459–1469. https://doi.org/10.1007/s00262-007-0286-3

    Article  PubMed  Google Scholar 

  92. Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. J Cancer 4(1):36–44. https://doi.org/10.7150/jca.5046

    Article  CAS  PubMed  Google Scholar 

  93. Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T, Gon G, Toyoda M, Tanigawa N (2003) Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 104(1):92–97. https://doi.org/10.1002/ijc.10915

    Article  CAS  PubMed  Google Scholar 

  94. Tsukayama S, Omura K, Yoshida K, Tanaka Y, Watanabe G (2005) Prognostic value of CD83-positive mature dendritic cells and their relation to vascular endothelial growth factor in advanced human gastric cancer. Oncol Rep 14(2):369–375

    CAS  PubMed  Google Scholar 

  95. Kocian P, Sedivcova M, Drgac J, Cerna K, Hoch J, Kodet R, Bartunkova J, Spisek R, Fialova A (2011) Tumor-infiltrating lymphocytes and dendritic cells in human colorectal cancer: their relationship to KRAS mutational status and disease recurrence. Hum Immunol 72(11):1022–1028. https://doi.org/10.1016/j.humimm.2011.07.312

    Article  CAS  PubMed  Google Scholar 

  96. Sisirak V, Faget J, Gobert M, Goutagny N, Vey N, Treilleux I, Renaudineau S, Poyet G, Labidi-Galy SI, Goddard-Leon S, Durand I, Le Mercier I, Bajard A, Bachelot T, Puisieux A, Puisieux I, Blay JY, Menetrier-Caux C, Caux C, Bendriss-Vermare N (2012) Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res 72(20):5188–5197. https://doi.org/10.1158/0008-5472.CAN-11-3468

    Article  CAS  PubMed  Google Scholar 

  97. Ramos RN, de Moraes CJ, Zelante B, Barbuto JA (2013) What are the molecules involved in regulatory T-cells induction by dendritic cells in cancer? Clin Dev Immunol 2013:806025. https://doi.org/10.1155/2013/806025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Michielsen AJ, Hogan AE, Marry J, Tosetto M, Cox F, Hyland JM, Sheahan KD, O’Donoghue DP, Mulcahy HE, Ryan EJ, O’Sullivan JN (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One 6(11):e27944. https://doi.org/10.1371/journal.pone.0027944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, Goode EL, Kalli KR, Knutson KL (2011) Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186(12):6905–6913. https://doi.org/10.4049/jimmunol.1100274

    Article  CAS  PubMed  Google Scholar 

  100. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13(9):832–842. https://doi.org/10.1038/ni.2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. https://doi.org/10.1084/jem.20080132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474. https://doi.org/10.4049/jimmunol.172.1.464

    Article  CAS  PubMed  Google Scholar 

  103. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809. https://doi.org/10.1038/nrc2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Watkins SK, Zhu Z, Riboldi E, Shafer-Weaver KA, Stagliano KE, Sklavos MM, Ambs S, Yagita H, Hurwitz AA (2011) FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest 121(4):1361–1372. https://doi.org/10.1172/JCI44325

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999. https://doi.org/10.4049/jimmunol.172.2.989

    Article  CAS  PubMed  Google Scholar 

  106. Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182(10):6207–6216. https://doi.org/10.4049/jimmunol.0803926

    Article  CAS  PubMed  Google Scholar 

  107. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Mellstedt H (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11(9):509–524. https://doi.org/10.1038/nrclinonc.2014.111

    Article  CAS  PubMed  Google Scholar 

  108. Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (2012) Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med 271(2):183–192. https://doi.org/10.1111/j.1365-2796.2011.02496.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, Investigators IS (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. https://doi.org/10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  110. Ozao-Choy J, Lee DJ, Faries MB (2014) Melanoma vaccines: mixed past, promising future. Surg Clin North Am 94(5):1017–1030, viii. https://doi.org/10.1016/j.suc.2014.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17(12):887–904. https://doi.org/10.1038/nrd.2018.169

    Article  CAS  PubMed  Google Scholar 

  112. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166

    Article  CAS  PubMed  Google Scholar 

  113. Salmaninejad A, Valilou SF, Soltani A, Ahmadi S, Abarghan YJ, Rosengren RJ, Sahebkar A (2019) Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol (Dordr) 42:591–608. https://doi.org/10.1007/s13402-019-00453-z

    Article  Google Scholar 

  114. Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10(1):58. https://doi.org/10.1186/s13045-017-0430-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang H, Shao Q, Sun J, Ma C, Gao W, Wang Q, Zhao L, Qu X (2016) Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology 5(4):e1122157. https://doi.org/10.1080/2162402X.2015.1122157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102. https://doi.org/10.1016/j.ccr.2009.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255. https://doi.org/10.1101/gad.1874010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, Ten Hacken NH, Cobos Jimenez V, Kootstra NA, Hamann J, Greaves DR, Locati M, Mantovani A, Gordon S (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121(9):e57–e69. https://doi.org/10.1182/blood-2012-06-436212

    Article  CAS  PubMed  Google Scholar 

  119. Scotton CJ, Martinez FO, Smelt MJ, Sironi M, Locati M, Mantovani A, Sozzani S (2005) Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174(2):834–845. https://doi.org/10.4049/jimmunol.174.2.834

    Article  CAS  PubMed  Google Scholar 

  120. Zhao P, Gao D, Wang Q, Song B, Shao Q, Sun J, Ji C, Li X, Li P, Qu X (2015) Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol 12(6):692–699. https://doi.org/10.1038/cmi.2014.108

    Article  CAS  PubMed  Google Scholar 

  121. Sanchez-Martin L, Estecha A, Samaniego R, Sanchez-Ramon S, Vega MA, Sanchez-Mateos P (2011) The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood 117(1):88–97. https://doi.org/10.1182/blood-2009-12-258186

    Article  CAS  PubMed  Google Scholar 

  122. Yaddanapudi K, Putty K, Rendon BE, Lamont GJ, Faughn JD, Satoskar A, Lasnik A, Eaton JW, Mitchell RA (2013) Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. J Immunol 190(6):2984–2993. https://doi.org/10.4049/jimmunol.1201650

    Article  CAS  PubMed  Google Scholar 

  123. Cua DJ, Stohlman SA (1997) In vivo effects of T helper cell type 2 cytokines on macrophage antigen-presenting cell induction of T helper subsets. J Immunol 159(12):5834–5840

    CAS  PubMed  Google Scholar 

  124. Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A, Ottenhoff TH (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181(3):2220–2226. https://doi.org/10.4049/jimmunol.181.3.2220

    Article  CAS  PubMed  Google Scholar 

  125. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  126. Yang M, McKay D, Pollard JW, Lewis CE (2018) Diverse functions of macrophages in different tumor microenvironments. Cancer Res 78(19):5492–5503. https://doi.org/10.1158/0008-5472.CAN-18-1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Banerjee S, Halder K, Bose A, Bhattacharya P, Gupta G, Karmahapatra S, Das S, Chaudhuri S, Bhattacharyya Majumdar S, Majumdar S (2011) TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages. Carcinogenesis 32(12):1789–1797. https://doi.org/10.1093/carcin/bgr208

    Article  CAS  PubMed  Google Scholar 

  128. Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, Ueo T, Komekado H, Kawada M, Minami M, Chiba T (2011) COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32(9):1333–1339. https://doi.org/10.1093/carcin/bgr128

    Article  CAS  PubMed  Google Scholar 

  129. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70(12):4840–4849. https://doi.org/10.1158/0008-5472.CAN-10-0269

    Article  CAS  PubMed  Google Scholar 

  130. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  131. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. https://doi.org/10.1038/nature10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S, Liu S, Qin Y, Chen H (2011) Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer 74(2):188–196. https://doi.org/10.1016/j.lungcan.2011.04.009

    Article  PubMed  Google Scholar 

  133. Zhang S, Che D, Yang F, Chi C, Meng H, Shen J, Qi L, Liu F, Lv L, Li Y, Meng Q, Liu J, Shang L, Yu Y (2017) Tumor-associated macrophages promote tumor metastasis via the TGF-beta/SOX9 axis in non-small cell lung cancer. Oncotarget 8(59):99801–99815. https://doi.org/10.18632/oncotarget.21068

    Article  PubMed  PubMed Central  Google Scholar 

  134. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204. https://doi.org/10.1155/2013/187204

    Article  CAS  PubMed  Google Scholar 

  135. Kim KJ, Wen XY, Yang HK, Kim WH, Kang GH (2015) Prognostic implication of M2 macrophages are determined by the proportional balance of tumor associated macrophages and tumor infiltrating lymphocytes in microsatellite-unstable gastric carcinoma. PLoS One 10(12):e0144192. https://doi.org/10.1371/journal.pone.0144192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bostrom MM, Irjala H, Mirtti T, Taimen P, Kauko T, Algars A, Jalkanen S, Bostrom PJ (2015) Tumor-associated macrophages provide significant prognostic information in urothelial bladder cancer. PLoS One 10(7):e0133552. https://doi.org/10.1371/journal.pone.0133552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, Dhara S, Simpson K, Gardner EE, Iacobuzio-Donahue CA, Brennan CW, Tabar V, Gutin PH, Joyce JA (2016) Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep 17(9):2445–2459. https://doi.org/10.1016/j.celrep.2016.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, Gutmann DH, Hambardzumyan D (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77(9):2266–2278. https://doi.org/10.1158/0008-5472.CAN-16-2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng Z, Torstensson S, Bercovici N, Baudesson de Chanville C, Combadiere B, Geissmann F, Savina A, Combadiere C, Boissonnas A (2018) Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med 215(10):2536–2553. https://doi.org/10.1084/jem.20180534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C, Cullinan DR, Luo J, Bearden AR, Lavine KJ, Yokoyama WM, Hawkins WG, Fields RC, Randolph GJ, DeNardo DG (2017) Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47(3):597. https://doi.org/10.1016/j.immuni.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  141. Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE (2010) Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 70(13):5270–5280. https://doi.org/10.1158/0008-5472.CAN-10-0012

    Article  CAS  PubMed  Google Scholar 

  142. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13(5):1472–1479. https://doi.org/10.1158/1078-0432.CCR-06-2073

    Article  CAS  PubMed  Google Scholar 

  143. Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, Karroum O, Jordan B, Carmeliet P, Gysemans C, De Baetselier P, Mazzone M, Van Ginderachter JA (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 74(1):24–30. https://doi.org/10.1158/0008-5472.CAN-13-1196

    Article  CAS  PubMed  Google Scholar 

  144. Migita T, Sato E, Saito K, Mizoi T, Shiiba K, Matsuno S, Nagura H, Ohtani H (1999) Differing expression of MMPs-1 and -9 and urokinase receptor between diffuse- and intestinal-type gastric carcinoma. Int J Cancer 84(1):74–79. https://doi.org/10.1002/(sici)1097-0215(19990219)84:1<74::aid-ijc14>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  145. Ohtani H, Naito Y, Saito K, Nagura H (1997) Expression of costimulatory molecules B7-1 and B7-2 by macrophages along invasive margin of colon cancer: a possible antitumor immunity? Lab Investig 77(3):231–241

    CAS  PubMed  Google Scholar 

  146. Zhou Q, Peng RQ, Wu XJ, Xia Q, Hou JH, Ding Y, Zhou QM, Zhang X, Pang ZZ, Wan DS, Zeng YX, Zhang XS (2010) The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med 8:13. https://doi.org/10.1186/1479-5876-8-13

    Article  PubMed  PubMed Central  Google Scholar 

  147. Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC (2000) Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 60(20):5857–5861

    CAS  PubMed  Google Scholar 

  148. Ohno S, Inagawa H, Dhar DK, Fujii T, Ueda S, Tachibana M, Suzuki N, Inoue M, Soma G, Nagasue N (2003) The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res 23(6D):5015–5022

    PubMed  Google Scholar 

  149. Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G, Inoue M (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24(5C):3335–3342

    PubMed  Google Scholar 

  150. Chao MP, Weissman IL, Majeti R (2012) The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol 24(2):225–232. https://doi.org/10.1016/j.coi.2012.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109(17):6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337. https://doi.org/10.1084/jem.20082173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gwak JM, Jang MH, Kim DI, Seo AN, Park SY (2015) Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS One 10(4):e0125728. https://doi.org/10.1371/journal.pone.0125728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Yang L, Chen YZ, Liu CX, Li SG, Cui XB, Zou H, Pang LJ, Zhao J, Qi Y, Liang WH, Yuan XL, Li F (2017) The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Exp Mol Pathol 102(1):15–21. https://doi.org/10.1016/j.yexmp.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  155. Jensen TO, Schmidt H, Moller HJ, Hoyer M, Maniecki MB, Sjoegren P, Christensen IJ, Steiniche T (2009) Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol 27(20):3330–3337. https://doi.org/10.1200/JCO.2008.19.9919

    Article  PubMed  Google Scholar 

  156. Varol C, Sagi I (2018) Phagocyte-extracellular matrix crosstalk empowers tumor development and dissemination. FEBS J 285(4):734–751. https://doi.org/10.1111/febs.14317

    Article  CAS  PubMed  Google Scholar 

  157. Pinto ML, Rios E, Silva AC, Neves SC, Caires HR, Pinto AT, Duraes C, Carvalho FA, Cardoso AP, Santos NC, Barrias CC, Nascimento DS, Pinto-do OP, Barbosa MA, Carneiro F, Oliveira MJ (2017) Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials 124:211–224. https://doi.org/10.1016/j.biomaterials.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  158. Previtera ML, Sengupta A (2015) Substrate stiffness regulates proinflammatory mediator production through TLR4 activity in macrophages. PLoS One 10(12):e0145813. https://doi.org/10.1371/journal.pone.0145813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hu H, Hang JJ, Han T, Zhuo M, Jiao F, Wang LW (2016) The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer. Tumour Biol 37(7):8657–8664. https://doi.org/10.1007/s13277-015-4741-z

    Article  CAS  PubMed  Google Scholar 

  160. Medrek C, Ponten F, Jirstrom K, Leandersson K (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306. https://doi.org/10.1186/1471-2407-12-306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ni YH, Ding L, Huang XF, Dong YC, Hu QG, Hou YY (2015) Microlocalization of CD68+ tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients. Tumour Biol 36(7):5291–5298. https://doi.org/10.1007/s13277-015-3189-5

    Article  CAS  PubMed  Google Scholar 

  162. Park JY, Sung JY, Lee J, Park YK, Kim YW, Kim GY, Won KY, Lim SJ (2016) Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer. Clin Res Hepatol Gastroenterol 40(3):357–365. https://doi.org/10.1016/j.clinre.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  163. Aljabery F, Olsson H, Gimm O, Jahnson S, Shabo I (2018) M2-macrophage infiltration and macrophage traits of tumor cells in urinary bladder cancer. Urol Oncol 36(4):159 e119–159 e126. https://doi.org/10.1016/j.urolonc.2017.11.020

    Article  CAS  Google Scholar 

  164. Carus A, Ladekarl M, Hager H, Nedergaard BS, Donskov F (2013) Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer. Br J Cancer 108(10):2116–2122. https://doi.org/10.1038/bjc.2013.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Carus A, Ladekarl M, Hager H, Pilegaard H, Nielsen PS, Donskov F (2013) Tumor-associated neutrophils and macrophages in non-small cell lung cancer: no immediate impact on patient outcome. Lung Cancer 81(1):130–137. https://doi.org/10.1016/j.lungcan.2013.03.003

    Article  PubMed  Google Scholar 

  166. Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JA, Tamagnone L, Mazzone M (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709. https://doi.org/10.1016/j.ccr.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  167. Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, Xia XF, Sun X, Li GG, Hu QD, Fu QH, Liang TB (2016) Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res 76(4):818–830. https://doi.org/10.1158/0008-5472.CAN-15-0977

    Article  CAS  PubMed  Google Scholar 

  168. Kawanaka T, Kubo A, Ikushima H, Sano T, Takegawa Y, Nishitani H (2008) Prognostic significance of HIF-2alpha expression on tumor infiltrating macrophages in patients with uterine cervical cancer undergoing radiotherapy. J Med Investig 55(1–2):78–86

    Article  Google Scholar 

  169. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    CAS  PubMed  Google Scholar 

  170. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226. https://doi.org/10.1016/j.ccr.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  171. Ji J, Zhang G, Sun B, Yuan H, Huang Y, Zhang J, Wei X, Zhang X, Hou J (2013) The frequency of tumor-infiltrating Tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression. Urology 82(4):974–e979-913. https://doi.org/10.1016/j.urology.2013.05.026

    Article  PubMed  Google Scholar 

  172. Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, Miyazaki M, Sakakibara M, Hiramatsu N, Kasahara A, Tomimaru Y, Tomokuni A, Nagano H, Hayashi N, Takehara T (2013) TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 57(4):1416–1425. https://doi.org/10.1002/hep.25965

    Article  CAS  PubMed  Google Scholar 

  173. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L, De Palma M (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526. https://doi.org/10.1016/j.ccr.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  174. Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG, Condeelis JS (2015) Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov 5(9):932–943. https://doi.org/10.1158/2159-8290.CD-15-0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, Harper K, Tardio E, Reyes Torres I, Jones J, Condeelis J, Merad M, Aguirre-Ghiso JA (2018) Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun 9(1):21. https://doi.org/10.1038/s41467-017-02481-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rohan TE, Xue X, Lin HM, D’Alfonso TM, Ginter PS, Oktay MH, Robinson BD, Ginsberg M, Gertler FB, Glass AG, Sparano JA, Condeelis JS, Jones JG (2014) Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J Natl Cancer Inst 106(8). https://doi.org/10.1093/jnci/dju136

  177. Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM (2010) Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A 107(18):8363–8368. https://doi.org/10.1073/pnas.0911378107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M, Allavena P (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23(2):249–262. https://doi.org/10.1016/j.ccr.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  179. Gordon EM, Sankhala KK, Chawla N, Chawla SP (2016) Trabectedin for soft tissue sarcoma: current status and future perspectives. Adv Ther 33(7):1055–1071. https://doi.org/10.1007/s12325-016-0344-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y (2015) CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6(12):10592–10603. https://doi.org/10.18632/oncotarget.3547

    Article  PubMed  PubMed Central  Google Scholar 

  181. Song M, Liu T, Shi C, Zhang X, Chen X (2016) Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10(1):633–647. https://doi.org/10.1021/acsnano.5b06779

    Article  CAS  PubMed  Google Scholar 

  182. Wang Y, Lin YX, Qiao SL, An HW, Ma Y, Qiao ZY, Rajapaksha RP, Wang H (2017) Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 112:153–163. https://doi.org/10.1016/j.biomaterials.2016.09.034

    Article  CAS  PubMed  Google Scholar 

  183. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, Coussens LM, Daldrup-Link HE (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994. https://doi.org/10.1038/nnano.2016.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616. https://doi.org/10.1126/science.1198443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25. https://doi.org/10.1186/1756-8722-2-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kushner BH, Cheung IY, Modak S, Kramer K, Ragupathi G, Cheung NK (2014) Phase I trial of a bivalent gangliosides vaccine in combination with beta-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res 20(5):1375–1382. https://doi.org/10.1158/1078-0432.CCR-13-1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Segal NH, Gada P, Senzer N, Gargano MA, Patchen ML, Saltz LB (2016) A phase II efficacy and safety, open-label, multicenter study of imprime PGG injection in combination with cetuximab in patients with stage IV KRAS-mutant colorectal cancer. Clin Colorectal Cancer 15(3):222–227. https://doi.org/10.1016/j.clcc.2016.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  188. Burke B, Sumner S, Maitland N, Lewis CE (2002) Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol 72(3):417–428

    CAS  PubMed  Google Scholar 

  189. Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage – a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7(3):255–262. https://doi.org/10.1038/sj.gt.3301058

    Article  CAS  PubMed  Google Scholar 

  190. Moyes KW, Lieberman NA, Kreuser SA, Chinn H, Winter C, Deutsch G, Hoglund V, Watson R, Crane CA (2017) Genetically engineered macrophages: a potential platform for cancer immunotherapy. Hum Gene Ther 28(2):200–215. https://doi.org/10.1089/hum.2016.060

    Article  CAS  PubMed  Google Scholar 

  191. Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD (2018) Chimeric antigen receptors that trigger phagocytosis. elife 7. https://doi.org/10.7554/eLife.36688

  192. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, Tran T, Lynn J, Chen JY, Volkmer JP, Agoram B, Huang J, Majeti R, Weissman IL, Takimoto CH, Chao MP, Smith SM (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 379(18):1711–1721. https://doi.org/10.1056/NEJMoa1807315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yang H, Shao R, Huang H, Wang X, Rong Z, Lin Y (2019) Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPa axis. Cancer Med 8:4245–4253. https://doi.org/10.1002/cam4.2332

    Article  PubMed  PubMed Central  Google Scholar 

  194. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, Weissman IL (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. https://doi.org/10.1038/s41586-019-1456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  196. Borrello MG, Alberti L, Fischer A, Degl’innocenti D, Ferrario C, Gariboldi M, Marchesi F, Allavena P, Greco A, Collini P, Pilotti S, Cassinelli G, Bressan P, Fugazzola L, Mantovani A, Pierotti MA (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A 102(41):14825–14830. https://doi.org/10.1073/pnas.0503039102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6(5):447–458. https://doi.org/10.1016/j.ccr.2004.09.028

    Article  CAS  PubMed  Google Scholar 

  198. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945. https://doi.org/10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, Tannock IF, Amir E (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):dju124. https://doi.org/10.1093/jnci/dju124

    Article  CAS  PubMed  Google Scholar 

  200. Wei B, Yao M, Xing C, Wang W, Yao J, Hong Y, Liu Y, Fu P (2016) The neutrophil lymphocyte ratio is associated with breast cancer prognosis: an updated systematic review and meta-analysis. Onco Targets Ther 9:5567–5575. https://doi.org/10.2147/OTT.S108419

    Article  PubMed  PubMed Central  Google Scholar 

  201. Shen M, Hu P, Donskov F, Wang G, Liu Q, Du J (2014) Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS One 9(6):e98259. https://doi.org/10.1371/journal.pone.0098259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158

    PubMed  PubMed Central  Google Scholar 

  203. Otten MA, Rudolph E, Dechant M, Tuk CW, Reijmers RM, Beelen RH, van de Winkel JG, van Egmond M (2005) Immature neutrophils mediate tumor cell killing via IgA but not IgG Fc receptors. J Immunol 174(9):5472–5480. https://doi.org/10.4049/jimmunol.174.9.5472

    Article  CAS  PubMed  Google Scholar 

  204. Stockmeyer B, Dechant M, van Egmond M, Tutt AL, Sundarapandiyan K, Graziano RF, Repp R, Kalden JR, Gramatzki M, Glennie MJ, van de Winkel JG, Valerius T (2000) Triggering Fc alpha-receptor I (CD89) recruits neutrophils as effector cells for CD20-directed antibody therapy. J Immunol 165(10):5954–5961. https://doi.org/10.4049/jimmunol.165.10.5954

    Article  CAS  PubMed  Google Scholar 

  205. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yan J, Kloecker G, Fleming C, Bousamra M II, Hansen R, Hu X, Ding C, Cai Y, Xiang D, Donninger H, Eaton JW, Clark GJ (2014) Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells. Oncoimmunology 3(7):e950163. https://doi.org/10.4161/15384101.2014.950163

    Article  PubMed  PubMed Central  Google Scholar 

  207. Simons MP, O’Donnell MA, Griffith TS (2008) Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol 26(4):341–345. https://doi.org/10.1016/j.urolonc.2007.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446. https://doi.org/10.1038/nrc.2016.52

    Article  CAS  PubMed  Google Scholar 

  209. Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, Granot Z, Fridlender ZG (2017) Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFalpha and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology 6(11):e1356965. https://doi.org/10.1080/2162402X.2017.1356965

    Article  PubMed  PubMed Central  Google Scholar 

  210. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J, de Visser KE (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556):345–348. https://doi.org/10.1038/nature14282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I, Henneman L, Kas SM, Prekovic S, Hau CS, Vrijland K, Drenth AP, de Korte-Grimmerink R, Schut E, van der Heijden I, Zwart W, Wessels LFA, Schumacher TN, Jonkers J, de Visser KE (2019) Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572:538–542. https://doi.org/10.1038/s41586-019-1450-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16(2):219–223. https://doi.org/10.1038/nm.2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Faget J, Groeneveld S, Boivin G, Sankar M, Zangger N, Garcia M, Guex N, Zlobec I, Steiner L, Piersigilli A, Xenarios I, Meylan E (2017) Neutrophils and snail orchestrate the establishment of a pro-tumor microenvironment in lung cancer. Cell Rep 21(11):3190–3204. https://doi.org/10.1016/j.celrep.2017.11.052

    Article  CAS  PubMed  Google Scholar 

  214. Moschetta M, Uccello M, Kasenda B, Mak G, McClelland A, Boussios S, Forster M, Arkenau HT (2017) Dynamics of neutrophils-to-lymphocyte ratio predict outcomes of PD-1/PD-L1 blockade. Biomed Res Int 2017:1506824. https://doi.org/10.1155/2017/1506824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Keeley EC, Mehrad B, Strieter RM (2010) CXC chemokines in cancer angiogenesis and metastases. Adv Cancer Res 106:91–111. https://doi.org/10.1016/S0065-230X(10)06003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, Tanghetti E, Albini A, Lowell C, Berton G, Noonan DM, Cassatella MA (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8):5034–5040. https://doi.org/10.4049/jimmunol.172.8.5034

    Article  CAS  PubMed  Google Scholar 

  217. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 104(51):20262–20267. https://doi.org/10.1073/pnas.0706438104

    Article  PubMed  PubMed Central  Google Scholar 

  218. Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY, Zheng L (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54(5):948–955. https://doi.org/10.1016/j.jhep.2010.08.041

    Article  CAS  PubMed  Google Scholar 

  219. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498. https://doi.org/10.1073/pnas.0601807103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 105(7):2640–2645. https://doi.org/10.1073/pnas.0712185105

    Article  PubMed  PubMed Central  Google Scholar 

  221. Coffelt SB, de Visser KE (2015) Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol 36(4):198–216. https://doi.org/10.1016/j.it.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  222. Condamine T, Mastio J, Gabrilovich DI (2015) Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 98(6):913–922. https://doi.org/10.1189/jlb.4RI0515-204R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jordan KR, Kapoor P, Spongberg E, Tobin RP, Gao D, Borges VF, McCarter MD (2017) Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother 66(4):503–513. https://doi.org/10.1007/s00262-016-1953-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, Borrello I, Kato M, Schadendorf D, Baniyash M, Umansky V (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci U S A 108(41):17111–17116. https://doi.org/10.1073/pnas.1108121108

    Article  PubMed  PubMed Central  Google Scholar 

  225. Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A, Boumpas D, Verginis P (2012) Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 188(3):1136–1146. https://doi.org/10.4049/jimmunol.1101816

    Article  CAS  PubMed  Google Scholar 

  226. Safari E, Ghorghanlu S, Ahmadi-Khiavi H, Mehranfar S, Rezaei R, Motallebnezhad M (2019) Myeloid-derived suppressor cells and tumor: current knowledge and future perspectives. J Cell Physiol 234(7):9966–9981. https://doi.org/10.1002/jcp.27923

    Article  CAS  PubMed  Google Scholar 

  227. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61(8):1155–1167. https://doi.org/10.1007/s00262-012-1294-5

    Article  CAS  PubMed  Google Scholar 

  228. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, Han Y, Wu M, Zhang L, Horbinski CM, Ahmed AU, Lesniak MS (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682. https://doi.org/10.1158/0008-5472.CAN-16-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, Ng IO, Wong CC (2016) Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 64(3):797–813. https://doi.org/10.1002/hep.28655

    Article  CAS  PubMed  Google Scholar 

  230. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN, Garrett WS (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257. https://doi.org/10.1016/j.celrep.2015.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD (2015) Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 13(2):412–424. https://doi.org/10.1016/j.celrep.2015.08.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28(5):509–554. https://doi.org/10.1016/j.dci.2003.09.010

    Article  CAS  PubMed  Google Scholar 

  233. Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737

    CAS  PubMed  Google Scholar 

  234. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35. https://doi.org/10.1002/eji.200939903

    Article  CAS  PubMed  Google Scholar 

  235. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185(4):2273–2284. https://doi.org/10.4049/jimmunol.1000901

    Article  CAS  PubMed  Google Scholar 

  236. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123(1):39–49. https://doi.org/10.1007/s10549-009-0622-8

    Article  CAS  PubMed  Google Scholar 

  237. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124(11):2621–2633. https://doi.org/10.1002/ijc.24249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Jiang M, Chen J, Zhang W, Zhang R, Ye Y, Liu P, Yu W, Wei F, Ren X, Yu J (2017) Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front Immunol 8:1840. https://doi.org/10.3389/fimmu.2017.01840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wang Y, Shen Y, Wang S, Shen Q, Zhou X (2018) The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett 415:117–128. https://doi.org/10.1016/j.canlet.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  240. Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF (2012) Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 90(11):1343–1355. https://doi.org/10.1007/s00109-012-0916-x

    Article  CAS  Google Scholar 

  241. Gargett T, Christo SN, Hercus TR, Abbas N, Singhal N, Lopez AF, Brown MP (2016) GM-CSF signalling blockade and chemotherapeutic agents act in concert to inhibit the function of myeloid-derived suppressor cells in vitro. Clin Transl Immunol 5(12):e119. https://doi.org/10.1038/cti.2016.80

    Article  CAS  Google Scholar 

  242. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701. https://doi.org/10.4049/jimmunol.0900092

    Article  CAS  PubMed  Google Scholar 

  243. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA−DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. https://doi.org/10.1158/0008-5472.CAN-09-3767

    Article  CAS  PubMed  Google Scholar 

  244. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891. https://doi.org/10.4049/jimmunol.174.8.4880

    Article  CAS  PubMed  Google Scholar 

  245. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. https://doi.org/10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  246. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9(12):1347–1355. https://doi.org/10.1038/ni.1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P (2001) Novel notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol 11(22):1729–1738. https://doi.org/10.1016/s0960-9822(01)00562-0

    Article  CAS  PubMed  Google Scholar 

  248. Cheng P, Kumar V, Liu H, Youn JI, Fishman M, Sherman S, Gabrilovich D (2014) Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res 74(1):141–152. https://doi.org/10.1158/0008-5472.CAN-13-1686

    Article  CAS  PubMed  Google Scholar 

  249. Gibb DR, Saleem SJ, Kang DJ, Subler MA, Conrad DH (2011) ADAM10 overexpression shifts lympho- and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch. J Immunol 186(7):4244–4252. https://doi.org/10.4049/jimmunol.1003318

    Article  CAS  PubMed  Google Scholar 

  250. Park YJ, Song B, Kim YS, Kim EK, Lee JM, Lee GE, Kim JO, Kim YJ, Chang WS, Kang CY (2013) Tumor microenvironmental conversion of natural killer cells into myeloid-derived suppressor cells. Cancer Res 73(18):5669–5681. https://doi.org/10.1158/0008-5472.CAN-13-0545

    Article  CAS  PubMed  Google Scholar 

  251. Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5(1):3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F (2011) Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 117(24):6532–6541. https://doi.org/10.1182/blood-2010-11-317321

    Article  CAS  PubMed  Google Scholar 

  253. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111(1):219–228. https://doi.org/10.1182/blood-2007-04-086835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Qu P, Yan C, Du H (2011) Matrix metalloproteinase 12 overexpression in myeloid lineage cells plays a key role in modulating myelopoiesis, immune suppression, and lung tumorigenesis. Blood 117(17):4476–4489. https://doi.org/10.1182/blood-2010-07-298380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Beury DW, Parker KH, Nyandjo M, Sinha P, Carter KA, Ostrand-Rosenberg S (2014) Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J Leukoc Biol 96(6):1109–1118. https://doi.org/10.1189/jlb.3A0414-210R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916. https://doi.org/10.1038/ni1001-907

    Article  CAS  PubMed  Google Scholar 

  257. Liu Y, Wei J, Guo G, Zhou J (2015) Norepinephrine-induced myeloid-derived suppressor cells block T-cell responses via generation of reactive oxygen species. Immunopharmacol Immunotoxicol 37(4):359–365. https://doi.org/10.3109/08923973.2015.1059442

    Article  CAS  PubMed  Google Scholar 

  258. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208(10):1949–1962. https://doi.org/10.1084/jem.20101956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Beury DW, Carter KA, Nelson C, Sinha P, Hanson E, Nyandjo M, Fitzgerald PJ, Majeed A, Wali N, Ostrand-Rosenberg S (2016) Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol 196(8):3470–3478. https://doi.org/10.4049/jimmunol.1501785

    Article  CAS  PubMed  Google Scholar 

  260. Jian SL, Chen WW, Su YC, Su YW, Chuang TH, Hsu SC, Huang LR (2017) Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis 8(5):e2779. https://doi.org/10.1038/cddis.2017.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Kusmartsev S, Eruslanov E, Kubler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, Siemann D, Vieweg J (2008) Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol 181(1):346–353. https://doi.org/10.4049/jimmunol.181.1.346

    Article  CAS  PubMed  Google Scholar 

  262. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835. https://doi.org/10.1038/nm1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B, Kendra K, Campbell A, Gautam S, Abood D, Landi I, Hsu V, Duggan M, Wesolowski R, Old M, Howard JH, Yu L, Stasik N, Olencki T, Muthusamy N, Tridandapani S, Byrd JC, Caligiuri M, Carson WE (2018) Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res 24(8):1891–1904. https://doi.org/10.1158/1078-0432.CCR-17-0691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ku AW, Muhitch JB, Powers CA, Diehl M, Kim M, Fisher DT, Sharda AP, Clements VK, O’Loughlin K, Minderman H, Messmer MN, Ma J, Skitzki JJ, Steeber DA, Walcheck B, Ostrand-Rosenberg S, Abrams SI, Evans SS (2016) Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. elife 5. https://doi.org/10.7554/eLife.17375

  265. Obermajer N, Kalinski P (2012) Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res 1(1):15. https://doi.org/10.1186/2047-1440-1-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. https://doi.org/10.4049/jimmunol.0802740

    Article  CAS  PubMed  Google Scholar 

  267. Gmunder H, Eck HP, Droge W (1991) Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem 201(1):113–117. https://doi.org/10.1111/j.1432-1033.1991.tb16263.x

    Article  CAS  PubMed  Google Scholar 

  268. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849. https://doi.org/10.1158/0008-5472.CAN-04-0465

    Article  CAS  PubMed  Google Scholar 

  269. Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol 32(3):527–535

    CAS  PubMed  Google Scholar 

  270. Li J, Wang L, Chen X, Li L, Li Y, Ping Y, Huang L, Yue D, Zhang Z, Wang F, Li F, Yang L, Huang J, Yang S, Li H, Zhao X, Dong W, Yan Y, Zhao S, Huang B, Zhang B, Zhang Y (2017) CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-beta-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 6(6):e1320011. https://doi.org/10.1080/2162402X.2017.1320011

    Article  PubMed  PubMed Central  Google Scholar 

  271. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, Zhang C, Yue D, Qin G, Zhang T, Li F, Chen X, Ping Y, Wang D, Gao Q, He Q, Huang L, Li H, Huang J, Zhao X, Xue W, Sun Z, Lu J, Yu JJ, Zhao J, Zhang B, Zhang Y (2018) Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res 78(7):1779–1791. https://doi.org/10.1158/0008-5472.CAN-17-2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790. https://doi.org/10.1084/jem.20131916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807. https://doi.org/10.1002/hep.23054

    Article  CAS  PubMed  Google Scholar 

  274. Eisenblaetter M, Flores-Borja F, Lee JJ, Wefers C, Smith H, Hueting R, Cooper MS, Blower PJ, Patel D, Rodriguez-Justo M, Milewicz H, Vogl T, Roth J, Tutt A, Schaeffter T, Ng T (2017) Visualization of tumor-immune interaction – target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics 7(9):2392–2401. https://doi.org/10.7150/thno.17138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Shi H, Zhang J, Han X, Li H, Xie M, Sun Y, Liu W, Ba X, Zeng X (2017) Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expression. Int J Cancer 140(6):1370–1383. https://doi.org/10.1002/ijc.30538

    Article  CAS  PubMed  Google Scholar 

  276. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK, Raubitschek A, Hoon DS, Forman S, Figlin RA, Liu J, Jove R, Yu H (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21(5):642–654. https://doi.org/10.1016/j.ccr.2012.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M (2016) The immunobiology of myeloid-derived suppressor cells in cancer. Tumour Biol 37(2):1387–1406. https://doi.org/10.1007/s13277-015-4477-9

    Article  CAS  PubMed  Google Scholar 

  279. Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, Bou-Reslan H, Kallop D, Weimer R, Ludlam MJ, Kaminker JS, Modrusan Z, van Bruggen N, Peale FV, Carano R, Meng YG, Ferrara N (2010) Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A 107(50):21248–21255. https://doi.org/10.1073/pnas.1015855107

    Article  PubMed  PubMed Central  Google Scholar 

  280. Chafe SC, Lou Y, Sceneay J, Vallejo M, Hamilton MJ, McDonald PC, Bennewith KL, Moller A, Dedhar S (2015) Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res 75(6):996–1008. https://doi.org/10.1158/0008-5472.CAN-14-3000

    Article  CAS  PubMed  Google Scholar 

  281. Supuran CT, Winum JY (2015) Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Med Chem 7(11):1407–1414. https://doi.org/10.4155/fmc.15.71

    Article  CAS  PubMed  Google Scholar 

  282. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. https://doi.org/10.1038/ncb3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Vadrevu SK, Chintala NK, Sharma SK, Sharma P, Cleveland C, Riediger L, Manne S, Fairlie DP, Gorczyca W, Almanza O, Karbowniczek M, Markiewski MM (2014) Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res 74(13):3454–3465. https://doi.org/10.1158/0008-5472.CAN-14-0157

    Article  CAS  PubMed  Google Scholar 

  284. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375. https://doi.org/10.1038/ncb1507

    Article  CAS  PubMed  Google Scholar 

  285. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G (2011) S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9(2):133–148. https://doi.org/10.1158/1541-7786.MCR-10-0394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, Kasai M, Vahdat L, Mackall CL, Lyden D, Wexler L, Kaplan RN (2016) Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res 76(6):1335–1347. https://doi.org/10.1158/0008-5472.CAN-15-0204

    Article  CAS  PubMed  Google Scholar 

  287. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5):302–317. https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  288. Wang Y, Ding Y, Guo N, Wang S (2019) MDSCs: key criminals of tumor pre-metastatic niche formation. Front Immunol 10:172. https://doi.org/10.3389/fimmu.2019.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Yan HH, Jiang J, Pang Y, Achyut BR, Lizardo M, Liang X, Hunter K, Khanna C, Hollander C, Yang L (2015) CCL9 induced by TGFbeta signaling in myeloid cells enhances tumor cell survival in the premetastatic organ. Cancer Res 75(24):5283–5298. https://doi.org/10.1158/0008-5472.CAN-15-2282-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, Geng Y, Gray JW, Moses HL, Yang L (2010) Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70(15):6139–6149. https://doi.org/10.1158/0008-5472.CAN-10-0706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Binsfeld M, Muller J, Lamour V, De Veirman K, De Raeve H, Bellahcene A, Van Valckenborgh E, Baron F, Beguin Y, Caers J, Heusschen R (2016) Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget 7(25):37931–37943. https://doi.org/10.18632/oncotarget.9270

    Article  PubMed  PubMed Central  Google Scholar 

  292. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118(10):3367–3377. https://doi.org/10.1172/JCI35213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30(1):83–95. https://doi.org/10.1007/s10555-011-9281-4

    Article  CAS  PubMed  Google Scholar 

  294. Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, Kotarski J, Tarkowski R, Wicha M, Cho K, Giordano T, Liu R, Zou W (2013) Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39(3):611–621. https://doi.org/10.1016/j.immuni.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  295. Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, Mukherjee P, Wang-Gillam A, Link DC, Denardo DG, Goedegebuure SP, Linehan DC (2014) Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother 63(5):513–528. https://doi.org/10.1007/s00262-014-1527-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Li ZL, Ye SB, OuYang LY, Zhang H, Chen YS, He J, Chen QY, Qian CN, Zhang XS, Cui J, Zeng YX, Li J (2015) COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncoimmunology 4(11):e1044712. https://doi.org/10.1080/2162402X.2015.1044712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Ouzounova M, Lee E, Piranlioglu R, El Andaloussi A, Kolhe R, Demirci MF, Marasco D, Asm I, Chadli A, Hassan KA, Thangaraju M, Zhou G, Arbab AS, Cowell JK, Korkaya H (2017) Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat Commun 8:14979. https://doi.org/10.1038/ncomms14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Ai L, Mu S, Wang Y, Wang H, Cai L, Li W, Hu Y (2018) Prognostic role of myeloid-derived suppressor cells in cancers: a systematic review and meta-analysis. BMC Cancer 18(1):1220. https://doi.org/10.1186/s12885-018-5086-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Eriksson E, Wenthe J, Irenaeus S, Loskog A, Ullenhag G (2016) Gemcitabine reduces MDSCs, tregs and TGFbeta-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med 14(1):282. https://doi.org/10.1186/s12967-016-1037-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835. https://doi.org/10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. https://doi.org/10.1158/2159-8274.CD-10-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 106(16):6742–6747. https://doi.org/10.1073/pnas.0902280106

    Article  PubMed  PubMed Central  Google Scholar 

  303. Sumida K, Wakita D, Narita Y, Masuko K, Terada S, Watanabe K, Satoh T, Kitamura H, Nishimura T (2012) Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur J Immunol 42(8):2060–2072. https://doi.org/10.1002/eji.201142335

    Article  CAS  PubMed  Google Scholar 

  304. Overall CM, Kleifeld O (2006) Tumour microenvironment – opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6(3):227–239. https://doi.org/10.1038/nrc1821

    Article  CAS  PubMed  Google Scholar 

  305. Ratner M (2014) Setback for JAK2 inhibitors. Nat Biotechnol 32(2):119. https://doi.org/10.1038/nbt0214-119a

    Article  CAS  PubMed  Google Scholar 

  306. Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, Yagita H, Sayers TJ, Murphy WJ, Wiltrout RH (2014) Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/alphaCD40 therapy. J Immunol 192(12):5821–5829. https://doi.org/10.4049/jimmunol.1400404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, Bouabe H, Scudamore CL, Hancox T, Maecker H, Friedman L, Turner M, Okkenhaug K, Vanhaesebroeck B (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510(7505):407–411. https://doi.org/10.1038/nature13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Davis RJ, Moore EC, Clavijo PE, Friedman J, Cash H, Chen Z, Silvin C, Van Waes C, Allen C (2017) Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kdelta/gamma. Cancer Res 77(10):2607–2619. https://doi.org/10.1158/0008-5472.CAN-16-2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918. https://doi.org/10.1007/s00262-013-1396-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67(22):11021–11028. https://doi.org/10.1158/0008-5472.CAN-07-2593

    Article  CAS  PubMed  Google Scholar 

  311. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290. https://doi.org/10.1038/nrclinonc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Teachey DT, Bishop MR, Maloney DG, Grupp SA (2018) Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’. Nat Rev Clin Oncol 15(4):218. https://doi.org/10.1038/nrclinonc.2018.19

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel G. Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, J., Späth, S.S., Weissman, S.M., Katz, S.G. (2020). An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics