Skip to main content

An Improved Leaf Protoplast System for Highly Efficient Transient Expression in Switchgrass (Panicum virgatum L.)

  • Protocol
  • First Online:
Metabolic Pathway Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2096))

Abstract

As a robust perennial C4-type monocot plant and a native species to North America, switchgrass (Panicum virgatum) has been evaluated and designated as a strong candidate bioenergy crop by the U.S. DOE. Although genetic modifications of switchgrass have been used to successfully reduce the recalcitrance of switchgrass biomass for biofuel production, the generation of transgenic switchgrass is still a slow and laborious process. A transient protoplast system can provide an excellent platform to accelerate the selection of genes-of-interest for tailoring switchgrass biomass. However, partially due to the lack of the complete genomic information, the attempts to optimize the transient protoplast system for switchgrass remain scarce. In this chapter, we provide an improved protocol for switchgrass protoplast isolation, increased transformation efficiency using CsCl gradient ultracentrifugation-derived plasmid DNA and extended application of the transient switchgrass protoplast system to analyze protein expression using western blot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringli C (2010) Monitoring the outside: cell wall-sensing mechanisms. Plant Physiol 153:1445–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21

    CAS  PubMed  Google Scholar 

  3. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, New York

    Google Scholar 

  4. Sheen J (2001) Signal transduction in maize and arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Q, Lin Y-C, Sun Y-H, Song J, Chen H, Zhang X-H, Sederoff RR, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci U S A 109:14699–14704

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963

    Google Scholar 

  7. Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    CAS  PubMed  Google Scholar 

  8. Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S (2009) Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    PubMed  PubMed Central  Google Scholar 

  9. Hu Q, Andersen SB, Hansen LN (1999) Plant regeneration capacity of mesophyll protoplasts from Brassica napus and related species. Plant Cell Tissue Organ Cult 59:189–196

    Google Scholar 

  10. Uddin MJ, Robin AHK, Raffiand S, Afrin S (2015) Somatic embryo formation from co-cultivated protoplasts of Brassica rapa & B. juncea. Am J Exp Agric 8:342–349

    CAS  Google Scholar 

  11. Maćkowska K, Jarosz A, Grzebelus E (2014) Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell Tissue Organ Cult 117:241–252

    Google Scholar 

  12. Wu J-Z, Liu Q, Geng X-S, Li K-M, Luo L-J, Liu J-P (2017) Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol 17:29

    PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D et al (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao J, Yao D, Lin F, Jiang M (2014) PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant 36:1271–1281

    CAS  Google Scholar 

  15. Fischer R, Hain R (1995) Tobacco protoplast transformation and use for functional analysis of newly isolated genes and gene constructs. Methods Cell Biol 50:401–410

    CAS  PubMed  Google Scholar 

  16. Guo Y, Song X, Zhao S, Lv J, Lu M (2015) A transient gene expression system in Populus euphratica Oliv. Protoplasts prepared from suspension cultured cells. Acta Physiol Plant 37:160

    Google Scholar 

  17. Lin Y-C, Li W, Chen H, Li Q, Sun Y-H, Shi R, Lin C-Y, Wang JP, Chen H-C, Chuang L et al (2014) A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc 9:2194–2205

    CAS  PubMed  Google Scholar 

  18. Wang H, Wang W, Zhan J, Huang W, Xu H (2015) An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Sci Hortic 191:82–89

    CAS  Google Scholar 

  19. Sasamoto H, Ashihara H (2014) Effect of nicotinic acid, nicotinamide and trigonelline on the proliferation of lettuce cells derived from protoplasts. Phytochem Lett 7:38–41

    CAS  Google Scholar 

  20. Shen Y, Meng D, McGrouther K, Zhang J, Cheng L (2017) Efficient isolation of Magnolia protoplasts and the application to subcellular localization of MdeHSF1. Plant Methods 13:44

    PubMed  PubMed Central  Google Scholar 

  21. Huo A, Chen Z, Wang P, Yang L, Wang G, Wang D, Liao S, Cheng T, Chen J, Shi J (2017) Establishment of transient gene expression systems in protoplasts from liriodendron hybrid mesophyll cells. PLoS One 12:e0172475

    PubMed  PubMed Central  Google Scholar 

  22. Masani MYA, Noll GA, Parveez GKA, Sambanthamurthi R, Prüfer D (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One 9:e96831

    PubMed  PubMed Central  Google Scholar 

  23. Kanofsky K, Lehmeyer M, Schulze J, Hehl R (2016) Analysis of microbe-associated molecular pattern-responsive synthetic promoters with the parsley protoplast system. In: Hehl R (ed) Plant synthetic promoters: methods and protocols. Springer New York, New York, NY, pp 163–174

    Google Scholar 

  24. Gao S-J, Damaj MB, Park J-W, Beyene G, Buenrostro-Nava MT, Molina J, Wang X, Ciomperlik JJ, Manabayeva SA, Alvarado VY et al (2013) Enhanced transgene expression in sugarcane by co-expression of virus-encoded RNA silencing suppressors. PLoS One 8:e66046

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Evans DA (1983) Agricultural applications of plant protoplast fusion. Bio/Technology 1:253

    Google Scholar 

  26. Kumar A, Cocking EC (1987) Protoplast fusion: a novel approach to organelle genetics in higher plants. Am J Bot 74:1289–1303

    Google Scholar 

  27. H-i J, Yan J, Zhai Z, Vatamaniuk OK (2015) Gene functional analysis using protoplast transient assays. In: Alonso JM, Stepanova AN (eds) Plant functional genomics: methods and protocols. Springer New York, New York, NY, pp 433–452

    Google Scholar 

  28. Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    CAS  Google Scholar 

  29. Bates GW (1999) Plant transformation via protoplast electroporation. In: Hall RD (ed) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 359–366

    Google Scholar 

  30. Xu X, Xie G, He L, Zhang J, Xu X, Qian R, Liang G, Liu J-H (2013) Differences in oxidative stress, antioxidant systems, and microscopic analysis between regenerating callus-derived protoplasts and recalcitrant leaf mesophyll-derived protoplasts of Citrus reticulata Blanco. Plant Cell Tissue Organ Cult 114:161–169

    CAS  Google Scholar 

  31. Nenz E, Varotto S, Lucchin M, Parrini P (2000) An efficient and rapid procedure for plantlet regeneration from chicory mesophyll protoplasts. Plant Cell Tissue Organ Cult 62:85–88

    CAS  Google Scholar 

  32. Fraiture M, Zheng X, Brunner F (2014) An Arabidopsis and tomato mesophyll protoplast system for fast identification of early MAMP-triggered immunity-suppressing effectors. In: Birch P, Jones JT, JIB B (eds) Plant-pathogen interactions: methods and protocols. Humana Press, Totowa, NJ, pp 213–230

    Google Scholar 

  33. Confraria A, Baena-González E (2016) Using Arabidopsis protoplasts to study cellular responses to environmental stress. In: Duque P (ed) Environmental responses in plants: methods and protocols. Springer New York, New York, NY, pp 247–269

    Google Scholar 

  34. Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2:2348–2353

    CAS  PubMed  Google Scholar 

  35. Li J-F, Bush J, Xiong Y, Li L, McCormack M (2011) Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. PLoS One 6:e27364

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    CAS  PubMed  Google Scholar 

  37. Stracke R, Thiedig K, Kuhlmann M, Weisshaar B (2016) Analyzing synthetic promoters using Arabidopsis potoplasts. In: Hehl R (ed) Plant synthetic promoters: methods and protocols. Springer New York, New York, NY, pp 67–81

    Google Scholar 

  38. Matsumoto TK, Keith LM, Cabos RYM, Suzuki JY, Gonsalves D, Thilmony R (2013) Screening promoters for Anthurium transformation using transient expression. Plant Cell Rep 32:443–451

    CAS  PubMed  Google Scholar 

  39. Lee JH, Jin S, Kim SY, Kim W, Ahn JH (2017) A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in Arabidopsis mesophyll protoplasts. Plant Methods 13:42

    PubMed  PubMed Central  Google Scholar 

  40. Zhang Z, Boonen K, Ferrari P, Schoofs L, Janssens E, van Noort V, Rolland F, Geuten K (2016) UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts. Plant Methods 12:42

    PubMed  PubMed Central  Google Scholar 

  41. Im JH, Yoo S-D (2014) Transient expression in Arabidopsis leaf mesophyll protoplast system for cell-based functional analysis of MAPK cascades signaling. In: Komis G, Šamaj J (eds) Plant MAP kinases: methods and protocols. Springer New York, New York, NY, pp 3–12

    Google Scholar 

  42. Bart R, Chern M, Park C-J, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13

    PubMed  PubMed Central  Google Scholar 

  43. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    CAS  PubMed  Google Scholar 

  44. Zhai Z, Sooksa-nguan T, Vatamaniuk OK (2009) Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149:642–652

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicolia A, Proux-Wéra E, Åhman I, Onkokesung N, Andersson M, Andreasson E, Zhu L-H (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    CAS  PubMed  Google Scholar 

  46. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li JF, Aach J, Norville JE, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat Biotechnol 31:688–691

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188–e188

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162

    CAS  PubMed  Google Scholar 

  50. Li J-F, Zhang D, Sheen J (2015) Targeted plant genome editing via the CRISPR/Cas9 technology. In: Alonso JM, Stepanova AN (eds) Plant functional genomics: methods and protocols. Springer New York, New York, NY, pp 239–255

    Google Scholar 

  51. McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Google Scholar 

  52. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. National Lab TN, Oak Ridge

    Google Scholar 

  53. Guretzky JA, Biermacher JT, Cook BJ, Kering MK, Mosali J (2011) Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 339:69–81

    CAS  Google Scholar 

  54. Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang Z-Y (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. Bioenergy Res 2:275–283

    Google Scholar 

  55. Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang Z-Y (2011) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenergy Res 4:153–164

    Google Scholar 

  56. Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ, Wang H, Jackson L, Tang Y, Neal Stewart C et al (2012) Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 193:121–136

    CAS  PubMed  Google Scholar 

  57. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108:3803–3808

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wuddineh WA, Mazarei M, Zhang J-Y, Turner GB, Sykes RW, Decker SR, Davis MF, Udvardi MK, Stewart CN (2016) Identification and overexpression of a knotted1-like transcription factor in switchgrass (Panicum virgatum L.) for lignocellulosic feedstock improvement. Front Plant Sci 7:520

    PubMed  PubMed Central  Google Scholar 

  59. Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Percival Zhang YH, Dixon RA, Zhao B (2011) Silencing of 4-coumarate:coenzyme a ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    CAS  PubMed  Google Scholar 

  60. Mazarei M, Al-Ahmad H, Rudis MR, Stewart CN (2008) Protoplast isolation and transient gene expression in switchgrass, Panicum virgatum L. Biotechnol J 3:354–359

    CAS  PubMed  Google Scholar 

  61. Burris KP, Dlugosz EM, Collins AG, Stewart CN, Lenaghan SC (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 35:693–704

    CAS  PubMed  Google Scholar 

  62. Liu Y, Merrick P, Zhang Z, Ji C, Yang B (2018) Fei S-z: targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9. Plant Biotechnol J 16:381–393

    CAS  PubMed  Google Scholar 

  63. Lin C-Y, Donohoe BS, Ahuja N, Garrity DM, Qu R, Tucker MP, Himmel ME, Wei H (2017) Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for agrobacterium-mediated transformation of switchgrass (Panicum virgatum). Plant Methods 13:113

    PubMed  PubMed Central  Google Scholar 

  64. Lin C-Y, Jakes JE, Donohoe BS, Ciesielski PN, Yang H, Gleber S-C, Vogt S, Ding S-Y, Peer WA, Murphy AS et al (2016) Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion. Biotechnol Biofuels 9:225

    PubMed  PubMed Central  Google Scholar 

  65. Heilig JS, Elbing KL, Brent R (2001) Large-scale preparation of plasmid DNA. In: Current protocols in molecular biology. John Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  66. Chen H-C, Li Q, Shuford CM, Liu J, Muddiman DC, Sederoff RR, Chiang VL (2011) Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proc Natl Acad Sci U S A 108:21253–21258

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tartof K, Hobbs C (1987) Improved media for growing plasmid and cosmid clones. Focus 9:12

    Google Scholar 

  68. Sambrook J, Russell DW (2006) Preparation of plasmid DNA by alkaline Lysis with SDS: Maxipreparation. Cold Spring Harb Protoc 2006:pdb.prot4090

    Google Scholar 

  69. Nilsen TW (2013) RNA-friendly plasmid preparation. Cold Spring Harb Protoc 2013:pdb.prot072926

    PubMed  Google Scholar 

  70. Bentsink L, Koornneef M (2008) Seed Dormancy and Germination. Arabidopsis Book 6:e0119

    PubMed  PubMed Central  Google Scholar 

  71. Danon A (2014) Protoplast preparation and determination of cell death. Bio-protocol 4:e1149

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000997. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Himmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, CY., Wei, H., Donohoe, B.S., Tucker, M.P., Himmel, M.E. (2020). An Improved Leaf Protoplast System for Highly Efficient Transient Expression in Switchgrass (Panicum virgatum L.). In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering. Methods in Molecular Biology, vol 2096. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0195-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0195-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0194-5

  • Online ISBN: 978-1-0716-0195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics