Skip to main content

Dynamic Flux Analysis: An Experimental Approach of Fluxomics

  • Protocol
  • First Online:
Metabolic Pathway Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2096))

Abstract

Metabolic flux analysis represents an essential perspective to understand cellular physiology and offers quantitative information to guide pathway engineering. A valuable approach for experimental elucidation of metabolic flux is dynamic flux analysis, which estimates the relative or absolute flow rates through a series of metabolic intermediates in a given pathway. It is based on kinetic isotope labeling experiments, liquid chromatography-mass spectrometry (LC-MS), and computational analysis that relate kinetic isotope trajectories of metabolites to pathway activity. Herein, we illustrate the mathematic principles underlying the dynamic flux analysis and mainly focus on describing the experimental procedures for data generation. This protocol is exemplified using cyanobacterial metabolism as an example, for which reliable labeling data for central carbon metabolites can be acquired quantitatively. This protocol is applicable to other microbial systems as well and can be readily adapted to address different metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter G, Krömer JO (2013) Fluxomics—connecting omics analysis and phenotypes. Environ Microbiol 15(7):1901–1916. https://doi.org/10.1111/1462-2920.12064

    Article  CAS  PubMed  Google Scholar 

  2. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  Google Scholar 

  3. Zamboni N, Fendt S-M, Ruhl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4(6):878–892

    Article  CAS  Google Scholar 

  4. Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3(8):1328–1340

    Article  CAS  Google Scholar 

  5. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13(6):656–665

    Article  CAS  Google Scholar 

  6. Yuan J, Fowler WU, Kimball E, Lu W, Rabinowitz JD (2006) Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat Chem Biol 2(10):529–530

    Article  CAS  Google Scholar 

  7. Wu C, Xiong W, Dai J, Wu Q (2016) Kinetic flux profiling dissects nitrogen utilization pathways in the oleaginous green alga Chlorella protothecoides. J Phycol 52(1):116–124. https://doi.org/10.1111/jpy.12374

    Article  CAS  PubMed  Google Scholar 

  8. Xiong W, Brune D, Vermaas WFJ (2014) The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93(4):786–796. https://doi.org/10.1111/mmi.12699

    Article  CAS  PubMed  Google Scholar 

  9. Xiong W, Morgan JA, Ungerer J, Wang B, Maness P-C, Yu J (2015) The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nat Plants 1:15053. https://doi.org/10.1038/nplants.2015.53

    Article  CAS  Google Scholar 

  10. Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9(4):1400–1411. https://doi.org/10.1039/C5EE03102H

    Article  CAS  Google Scholar 

  11. Amador-Noguez D, Feng X-J, Fan J, Roquet N, Rabitz H, Rabinowitz JD (2010) Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in clostridium acetobutylicum. J Bacteriol 192(17):4452–4461. https://doi.org/10.1128/jb.00490-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30(9):1333–1335. https://doi.org/10.1093/bioinformatics/btu015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. You L, Berla B, He L, Pakrasi HB, Tang YJ (2014) 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J 9(5):684–692. https://doi.org/10.1002/biot.201300477

    Article  CAS  PubMed  Google Scholar 

  14. You L, He L, Tang YJ (2015) Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. J Bacteriol 197(5):943–950. https://doi.org/10.1128/jb.02149-14

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79(16):6167–6173. https://doi.org/10.1021/ac070470c

    Article  CAS  PubMed  Google Scholar 

  16. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography–mass spectrometry. J Chromatogr A 1147(2):153–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Renewable Energy Laboratory (NREL) Director’s Fellowship (Laboratory Directed Research and Development Subtask 06271403. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the chapter do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xiong, W., Jiang, H., Maness, P. (2020). Dynamic Flux Analysis: An Experimental Approach of Fluxomics. In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering. Methods in Molecular Biology, vol 2096. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0195-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0195-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0194-5

  • Online ISBN: 978-1-0716-0195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics