Skip to main content

A New Perspective on Cryotherapy: Pathogen Elimination Using Plant Shoot Apical Meristem via Cryogenic Techniques

  • Protocol
  • First Online:
Plant Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2094))

Abstract

Plant pathogens cause different diseases on crops and industrial plant species that result in economic losses. Pathogen-free plant material has usually been obtained by traditional procedures such as meristem culture, thermotherapy, and chemotherapy. However, there are many limitations of these procedures such as mechanical challenges of meristem excision and low regeneration rate, low resistance to high temperatures, phytotoxicity, and mutagenic effects of the chemicals used in the procedures. Cryotherapy is a newly developed biotechnological tool that has been very effective in virus elimination from economically important plant species. This tool has overcome the abovementioned limitations. This chapter aims to highlight the importance of the cryogenic procedures (vitrification, encapsulation-vitrification, droplet vitrification, two-step freezing, dehydration, encapsulation-dehydration) in order to generate virus-free germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    Article  CAS  PubMed  Google Scholar 

  2. Lazarowitz SD (2006) Plant viruses. In: Fields BN, Knipe DM (eds) Fields virology, 5th edn. Lippincott, Williams & Wilkins Publishers, Philadelphia, PA, pp 641–706

    Google Scholar 

  3. Wren JD, Roossinck MJ, Nelson RS, Scheets K, Palmer MW, Melcher U (2006) Plant virus biodiversity and ecology. PLoS Biol 4:80

    Article  CAS  Google Scholar 

  4. Hogenhout SA, Ammar E, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  5. Faccioli VC, Marani F (1998) Virus elimination by meristem tip culture and tip micrografting. In: Hadidi A et al (eds) Plant virus disease control. American Phytopathological Society, Saint Paul, MN, pp 346–380

    Google Scholar 

  6. Maliogka VI, Skiada FG, Eleftheriou EP, Katis NI (2009) Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Sci Hortic 123:280–282

    Article  Google Scholar 

  7. Benson EE (2007) Cryopreservation of shoot-tips and meristems. In: Day JG, Pennington MW (eds) Cryopreservation and freezing-drying protocols, methods in molecular biology. Humana Press, Totowa, NJ, pp 121–132

    Google Scholar 

  8. Wang QC, Cuellar WJ, Rajama ML, Hiraka Y, Valkonen JPT (2008) Combined thermotherapy and cryotherapy for virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips to efficient production of virus-free plants. Mol Plant Pathol 9:237–250

    Article  CAS  PubMed  Google Scholar 

  9. Wang MR, Li BQ, Feng CH, Wang QC (2016) Culture of shoot tips from adventitious shoots can eradicate apple stem pitting virus but fails in apple stem grooving virus. Plant Cell Tissue Organ Cult 125:283–291

    Article  CAS  Google Scholar 

  10. Hu GJ, Dong Y, Zhang Z, Fan X, Ren F, Zhou J (2015) Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell Tissue Organ Cult 121:435–443

    Article  CAS  Google Scholar 

  11. Parker WB (2005) Metabolism and antiviral activity of ribavirin. Virus Res 107:165–171

    Article  CAS  PubMed  Google Scholar 

  12. Skiada FG, Maliogka VI, Katis VI, Eleftheriou EP (2013) Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two vitis vinifera cultivars by in vitro chemotherapy. Eur J Plant Pathol 135:407–414

    Article  CAS  Google Scholar 

  13. Wang QC, Valkonen JPT (2008) Elimination of two synergistically interacting viruses from sweet potato using shoot tip culture and cryotherapy. J Virol Methods 154:135–145

    Article  CAS  PubMed  Google Scholar 

  14. Cai BH, Zhang JY, Qu SC, Gao ZH, Quiao YS, Zhang Z, Zhu F (2008) Preliminary study on the elimination of strawberry mild yellow edge virus from in vitro shoot tips of strawberry cv. Meihou by vitrification cryopreservation. J Fruit Sci 25:872–876

    CAS  Google Scholar 

  15. Wang QC, Valkonen JPT (2009) Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.). CryoLetters 30:171–182

    Google Scholar 

  16. Yi JY, Lee GA, Jeong JW, Lee SY, Lee YG (2014) Elimination potato virus Y (PVY) and potato leaf roll virus (PLRV) using cryotherapy of in vitro grown potato shoot tips. Korean J Crop Sci 59:498–504

    Article  Google Scholar 

  17. Pathirana R, McLachlan A, Hedderley D, Carra A, Carimi F, Panis B (2015) Removal of leafroll viruses from infected grapevine plants by droplet vitrification. Acta Hortic 1083:491–498

    Article  Google Scholar 

  18. Li BQ, Feng CH, Hu LY, Wang MR, Wang QC (2016) Shoot tip culture and cryopreservation for eradication of apple stem pitting virus (ASPV) and apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Ann Appl Biol 168:142–150

    Article  CAS  Google Scholar 

  19. Waterworth HE, Hadidi A (1998) Economical losses due to plant viruses. In: Hadidi A et al (eds) Plant virus disease control. American Phytopathological Society, Saint Paul, MN, pp 1–13

    Google Scholar 

  20. Esquinas-Alca´ zar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev Genet 6:946–953

    Article  Google Scholar 

  21. Kaya E, Yilmaz Gokdogan E (2015) Virus eradication from plants via novel biotechnological processes: one step freezing methods based on vitrification of cryotherapy technıques. Mugla J Sci Technol 1(2):34–40

    Article  Google Scholar 

  22. Helliot B, Panis B, Poumay Y, Swenen R, Lepoivre P, Frison E (2002) Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep 20:1117–1122

    Article  CAS  Google Scholar 

  23. Ding F, Jin S, Hong NI, Zhong Y, Cao Q, Yi G, Wang G (2008) Vitrification-cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Rep 27:241–250

    Article  CAS  PubMed  Google Scholar 

  24. Wang QC, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of Grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327

    Article  CAS  Google Scholar 

  25. Bayati S, Shams-Bakhsh M, Moieni A (2011) Elimination of Grapevine Virus A (GVA) by cryotherapy and electrotherapy. J Agr Sci Technol 13:443–450

    Google Scholar 

  26. Wang Q, Liu Y, Xie Y, You M (2006) Cryotherapy of potato shoot tips for efficient elimination of Potato leaf roll virus (PLRV) and Potato virus Y (PVY). Potato Res 49:119–129

    Article  Google Scholar 

  27. Brison M, de Boucaud MT, Pierronnet A, Dosba F (1997) Effect of cryopreservation on the sanitary state of a cv. Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci 123:189–196

    Article  CAS  Google Scholar 

  28. Shin JH, Kang DK, Sohn JK (2013) Production of yam mosaic virus (ymv)-free Dioscorea opposita plants by cryotherapy of shoot-tips. Cryo Letters 34(2):149–157

    PubMed  Google Scholar 

  29. Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  30. Mazur P (1984) Freezing of living cells: mechanisms and applications. Am J Physiol Cell Physiol 247:125–142

    Article  Google Scholar 

  31. Meryman HT, William RT, Douglas MSTJ (1977) Freezing injury 2solution effects and its prevention by natural or artificial cryopreservation. Cryobiology 14:287–302

    Article  CAS  PubMed  Google Scholar 

  32. Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wallingford, pp 119–162

    Google Scholar 

  33. Ozudogru EA, Capuana M, Kaya E, Panis B, Lambardi M (2010) Cryopreservation of Fraxinus excelsior L. embryogenic callus by one-step freezing and slow cooling techniques. CryoLetters 31(1):63–75

    CAS  PubMed  Google Scholar 

  34. Withers LA, Engelmann F (1998) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Marcel Dekker Inc., New York, pp 57–88

    Google Scholar 

  35. Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  36. Burke MJ (1986) The glass state and survival of anhydrous biological systems. In: Leopold AC (ed) Membrane, metabolism and dry organisms. Cornell University Press, Ithaca, NY, pp 358–364

    Google Scholar 

  37. Fahy GM, Levy DI, Ali SE (1987) Some emerging principles underlying the physical properties, biological actions and utility of vitrification solutions. Cryobiology 24:196–213

    Article  CAS  PubMed  Google Scholar 

  38. Kaya E, Alves A, Rodrigues L, Jenderek M, Hernandez-Ellis M, Ozudogru A, Ellis D (2013) Cryopreservation of eucalyptus genetic resources. CryoLetters 34(6):608–618

    CAS  PubMed  Google Scholar 

  39. Ozudogru EA, Kaya E (2012) Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods. CryoLetters 33(5):363–375

    CAS  PubMed  Google Scholar 

  40. Ozudogru EA, Kaya E, Kirdok LM (2011a) Comparison of different PVS2-based procedures for cryopreservation of Thymus spp. European Cooperation in Science and Technology, Food and Agriculture, Cryoplanet, COST Action 871:86–92

    Google Scholar 

  41. Ozudogru EA, Kirdok E, Kaya E, Capuana M, Benelli C, Engelmann F (2011b) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. CryoLetters 32(2):99–110

    CAS  PubMed  Google Scholar 

  42. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  43. Steponkus PL, Langis R, Fujikawa S (1992) In: Steponkus PL (ed) Advances in low temperature biology, vol 1. JAI Press, Hamptomill, UK, pp 1–16

    Google Scholar 

  44. Sakai A, Kobayashi S, Oiyama I (1991) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb.) by a simple freezing method. Plant Sci 74:243–248

    Article  Google Scholar 

  45. Nishizawa S, Sakai A, Amano Y, Matuzawa T (1993) Cryopreservation of Asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification method. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  46. Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  CAS  PubMed  Google Scholar 

  47. Reinhoud PJ (1996) Cryopreservation of tobacco suspension cells by vitrification. Doctoral Paper, Rijks University, Leiden, The Netherlands

    Google Scholar 

  48. Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome, pp 8–20

    Google Scholar 

  49. Kaya E (2016) Long-term germplasm conservation of two economical important Musa species via cryopreservation-dehydration technıque. Biological Diversity and Conservation 9(3):178–182

    Google Scholar 

  50. Kaya E, Souza FVD, Yılmaz Gökdoğan E, Ceylan M, Jenderek M (2016) Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen. Turk J Biol 41:242–248

    Article  CAS  Google Scholar 

  51. Berjak P, Farrant JM, Mycock DJ, Pammenter NW (1989) Homoiohydrous (recalcitrant) seeds: the enigma of their desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186:249–261

    Google Scholar 

  52. Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation vitrification method. CryoLetters 16:189–196

    Google Scholar 

  53. Dereuddre J, Hassen M, Blandin S, Kaminski M (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 2. Thermal analysis. CryoLetters 12:135–148

    Google Scholar 

  54. Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm-current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome

    Google Scholar 

  55. Schäfer-Menuhr A, Schumacher HM, Mix-Wagner G (1997) Long-term storage of old potato varieties by cryopreservation of shoot-tips in liquid nitrogen. Plant Genet Resour Newsletter 111(1):19–24

    Google Scholar 

  56. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168(1):45–55

    Article  CAS  Google Scholar 

  57. Souza FVD, Kaya E, Vieira J, Hilo de Souza E, Amorim O, Skogerboe D, Matsumoto T, Alves C, Ledo S, Jenderek M (2015) Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tissue Org Cult 124(2):351–360

    Article  CAS  Google Scholar 

  58. Kaya E, Souza FVD (2017) Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cell Develop Biol Plant 53(4):410–417

    Article  CAS  Google Scholar 

  59. Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol 41:305–324

    Article  CAS  PubMed  Google Scholar 

  60. Van Weemen BK, Schuurs AHWM (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15:232–236

    Article  PubMed  Google Scholar 

  61. Ward E, Foster SJ, Fraaije BA, McCartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  62. White EJ, Venter M, Hiten NF, Burger JT (2008) Modified Cetyltrimethylammonium bromide method improves robustness and versatility: the benchmark for plant RNA extraction. Biotechnol J 3(11):1424–1428

    Article  CAS  PubMed  Google Scholar 

  63. Kaya E (2015) Using reverse transcription-polymerase chain reaction (RT PCR) for determination of apple mosaic ilarvirus (ApMV) in Hazelnut (Corylus avellana L.) Cultivars. JSM Biochem Mol Biol 3(1):1011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergun Kaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaya, E., Galatali, S., Guldag, S., Celik, O. (2020). A New Perspective on Cryotherapy: Pathogen Elimination Using Plant Shoot Apical Meristem via Cryogenic Techniques. In: Naseem, M., Dandekar, T. (eds) Plant Stem Cells. Methods in Molecular Biology, vol 2094. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0183-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0183-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0182-2

  • Online ISBN: 978-1-0716-0183-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics