Skip to main content

Chromatin Analysis of Metabolic Gene Clusters in Plants

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2093))

  • 1596 Accesses

Abstract

Plant metabolic gene clusters consist of neighboring genes that are involved in the biosynthesis of secondary or specialized metabolites. The genes within clusters are typically co-regulated, share a common set of chromatin marks, and code for the biosynthesis enzymes of a single metabolic pathway. Here, we describe three essential protocols for the basic analysis of metabolic gene clusters at transcription, histone modification, and metabolite level. The protocols are specified to clusters in the Arabidopsis thaliana genome and are transferable to other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5:299–310

    Article  CAS  Google Scholar 

  2. Nützmann HW, Huang A, Osbourn A (2016) Plant metabolic clusters – from genetics to genomics. New Phytol 211:771–789

    Article  Google Scholar 

  3. Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19:447–459

    Article  CAS  Google Scholar 

  4. Nützmann HW, Osbourn A (2015) Regulation of metabolic gene clusters in Arabidopsis thaliana. New Phytol 205:503–510

    Article  Google Scholar 

  5. Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S et al (2016) Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 44:2255–2265

    Article  CAS  Google Scholar 

  6. Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51:1694–1706

    Article  CAS  Google Scholar 

  7. Song J, Rutjens B, Dean C (2014) Detecting histone modifications in plants. Methods Mol Biol 1112:165–175

    Article  CAS  Google Scholar 

  8. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939

    Article  CAS  Google Scholar 

  9. Rajniak J, Barco B, Clay NK, Sattely ES (2015) A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature 525:376–379

    Article  CAS  Google Scholar 

  10. Field B, Fiston-Lavier AS, Kemen A, Geisler K, Quesneville H, Osbourn AE (2011) Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proc Natl Acad Sci U S A 108:16116–16121

    Article  CAS  Google Scholar 

  11. Field B, Osbourn AE (2008) Metabolic diversification – independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Article  CAS  Google Scholar 

  12. Sohrabi R, Huh JH, Badieyan S, Rakotondraibe LH, Kliebenstein DJ, Sobrado P, Tholl D (2015) In planta variation of volatile biosynthesis: an alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots. Plant Cell 27:874–890

    Article  CAS  Google Scholar 

  13. Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A 114:E6005–E6014

    Article  CAS  Google Scholar 

  14. Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364: pii: eaau6389

    Article  CAS  Google Scholar 

  15. De Lucia F, Crevillen P, Jones AM, Greb T, Dean C (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105:16831–16836

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by startup funding from the Southern University of Science and Technology and Shenzhen municipal government (ACH) and the Royal Society University Research Fellowship (UF160138) (HWN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ancheng C. Huang or Hans-Wilhelm Nützmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, A.C., Nützmann, HW. (2020). Chromatin Analysis of Metabolic Gene Clusters in Plants. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics