Skip to main content

Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

The drug development pipeline has stalled because of the difficulty in identifying new drug targets while minimizing off-target effects. Computational methods, such as the use of metabolic network reconstructions, may provide a cost-effective platform to test new hypotheses for drug targets and prevent off-target effects. Here, we summarize available methods to identify drug targets and off-target effects using either reaction-centric, gene-centric, or metabolite-centric approaches with genome-scale metabolic network reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mougin F, Auber D, Bourqui R et al (2018) Visualizing omics and clinical data: Which challenges for dealing with their variety? Methods 132:3–18

    Article  CAS  PubMed  Google Scholar 

  2. Schuster D, Laggner C, Langer T (2005) Why drugs fail—a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559

    Article  CAS  PubMed  Google Scholar 

  3. Edwards IR, Aronson JK (2000) Adverse drug reactions: definitions, diagnosis, and management. Lancet 356:1255–1259

    Article  CAS  PubMed  Google Scholar 

  4. Sawada R, Iwata M, Tabei Y et al (2018) Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci Rep 8:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pey J, San José-Eneriz E, Ochoa MC et al (2017) In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Sci Rep 7:14358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bordbar A, Lewis NE, Schellenberger J et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Orth JD, Palsson BØ, Fleming RMT (2010) Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus 4:PMID: 26443778

    Article  CAS  Google Scholar 

  9. Oberhardt MA, Puchalka J, Fryer KE et al (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425

    Article  CAS  PubMed  Google Scholar 

  12. Mardinoglu A, Agren R, Kampf C et al (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083

    Article  PubMed  CAS  Google Scholar 

  13. Blais EM, Rawls KD, Dougherty BV et al (2017) Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun 8:14250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yizhak K, Chaneton B, Gottlieb E et al (2015) Modeling cancer metabolism on a genome scale. Mol Syst Biol 11:817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ghaffari P, Mardinoglu A, Asplund A et al (2015) Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci Rep 5:8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang RL, Xie L, Xie L et al (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6:e1000938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zielinski DC, Filipp FV, Bordbar A et al (2015) Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis. Nat Commun 6:7101

    Article  PubMed  Google Scholar 

  18. Shaked I, Oberhardt MA, Atias N et al (2016) Metabolic network prediction of drug side effects. Cell Syst 2:209–213

    Article  CAS  PubMed  Google Scholar 

  19. Heirendt L, Arreckx S, Pfau T et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rawls KD, Dougherty BV, Blais EM et al (2019) A simplified metabolic network reconstruction to promote understanding and development of flux balance analysis tools. Comput Biol Med 105:64–71

    Article  PubMed  Google Scholar 

  22. Ma H, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Article  PubMed  PubMed Central  Google Scholar 

  23. Swainston N, Smallbone K, Hefzi H et al (2016) Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Brunk E, Sahoo S, Zielinski DC et al (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol 36:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robaina Estévez S, Nikoloski Z (2014) Generalized framework for context-specific metabolic model extraction methods. Front Plant Sci 5:491

    PubMed  PubMed Central  Google Scholar 

  26. Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299

    Article  PubMed  PubMed Central  Google Scholar 

  27. Uhlen M, Hallstro m BM, Lindskog C et al (2016) Transcriptomics resources of human tissues and organs. Mol Syst Biol 12:862–862

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12:e1004808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Agren R, Bordel S, Mardinoglu A et al (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang A-D, Dai S-X, Huang J-F Reconstruction and analysis of human kidney-specific metabolic network based on omics data. https://www.hindawi.com/journals/bmri/2013/187509/

  31. Sohrabi-Jahromi S, Marashi S-A, Kalantari S (2016) A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm Genome 27:158–167

    Article  CAS  PubMed  Google Scholar 

  32. Karlstädt A, Fliegner D, Kararigas G et al (2012) CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol 6:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhao Y, Huang J (2011) Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data. Biochem Biophys Res Commun 415:450–454

    Article  CAS  PubMed  Google Scholar 

  34. Bordbar A, Mo ML, Nakayasu ES et al (2012) Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 8:558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Agren R, Mardinoglu A, Asplund A et al (2014) Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 10:721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yizhak K, Gabay O, Cohen H et al (2013) Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 4:2632

    Article  PubMed  CAS  Google Scholar 

  38. Nogiec C, Burkart A, Dreyfuss JM et al (2015) Metabolic modeling of muscle metabolism identifies key reactions linked to insulin resistance phenotypes. Mol Metab 4:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yizhak K, Le Devedec SE, Rogkoti VM et al (2014) A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 10:744–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Stempler S, Yizhak K, Ruppin E (2014) Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer’s disease. PLoS One 9:e105383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wishart DS, Feunang YD, Guo AC, et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Article  PubMed Central  CAS  Google Scholar 

  42. Kuhn M, Campillos M, Letunic I et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuhn M, Letunic I, Jensen LJ et al (2016) The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1075–D1079

    Article  CAS  PubMed  Google Scholar 

  44. Rienksma RA, Suarez-Diez M, Spina L et al (2014) Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol 26:610–622

    Article  CAS  PubMed  Google Scholar 

  45. Guarente L (1993) Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet 9:362–366

    Article  CAS  PubMed  Google Scholar 

  46. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401

    Article  PubMed  PubMed Central  Google Scholar 

  47. Raškevičius V, Mikalayeva V, Antanavičiūtė I et al (2018) Genome scale metabolic models as tools for drug design and personalized medicine. PLoS One 13:e0190636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  CAS  PubMed  Google Scholar 

  49. Mehrmohamadi M, Jeong SH, Locasale JW (2017) Molecular features that predict the response to antimetabolite chemotherapies. Cancer Metab 5:8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Papin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rawls, K., Dougherty, B.V., Papin, J. (2020). Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics