Skip to main content

Tissue-Specific eQTL in Zebrafish

  • Protocol
  • First Online:
eQTL Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2082))

Abstract

Copy number variants (CNVs) refer to the loss or gain of copies of a genomic DNA region. While some CNVs may play a role in species evolution by enriching the diversity of an organism, CNVs may also be linked to certain diseases such as neurological disorders, early onset obesity, and cancer. CNVs may affect gene expression by direct overlap of the genic region or by an indirect effect where the CNV is located outside the gene location. These indirect CNV regions may contain regulatory elements such as transcription enhancers or repressors as well as regulators such as miRNAs which may work at the level of transcription or translation. Danio rerio (zebrafish) is an excellent model organism for CNV studies. Zebrafish genomes contain a large amount of variation with 14.6% of the zebrafish reference genome found to be copy number variable. This level of variation is more than four times the percentage of reference genome sequence covered by similarly common CNVs in humans. It is this high level of variation that makes zebrafish interesting to investigate the effects of CNV on gene expression. Additionally, zebrafish share 70% of genetic similarities with humans, and 84% of genes associated with human disease are also found in zebrafish. Expressive quantitative trait loci (eQTL) analysis may be used in zebrafish to explore how CNVs may affect gene expression in both a direct and indirect manner. eQTL analysis may be performed for cis associations with a 1-Mb (megabase) window upstream and downstream from the transcription probe midpoint to CGH midpoint. Trans associations (variants that are located beyond the 1-Mb window of the gene either on the same chromosome as the gene or on a different chromosome) may be investigated as well through eQTL analysis; however, trans associations require more tests to be performed than cis associations, which limits power to detect associations. Pairwise associations between each pair of copy number variant and gene will be investigated separately from the same individual using Spearman rank correlations with significant associations found being followed with a multi-test correction technique to assess significance of those CNV gene expression associations. An association between a CNV to a gene expression phenotype should be considered significant only if the p value from the analysis of the observed data is lower than the 0.001 tail threshold from a distribution of the minimal p values (which are found from all comparisons for a given gene from 10,000 permutations of the expression phenotypes). Associations between CNVs and genes may be found to be direct or indirect as well as positive (increased copy number—increased expression) or negative (increased copy number—decreased expression, decreased copy number—increased expression). Ongoing analyses with these associations will investigate the impact of CNVs on gene functionality including immune function and potential disease susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646

    Article  CAS  PubMed  Google Scholar 

  2. Yim SH, Kim TM, Hu HJ, Kim JH, Kim BJ, Lee JY, Han BG, Shin SH, Jung SH, Chung YJ (2010) Copy number variations in East-Asian population and their evolutionary and functional implications. Hum Mol Genet 19:1001–1008

    Article  CAS  PubMed  Google Scholar 

  3. Conrad DF, Pinto D, Redon R et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Article  CAS  PubMed  Google Scholar 

  4. Egan CM, Sridhar S, Wigler M, Hall IM (2007) Recurrent DNA copy number variation in the laboratory mouse. Nat Genet 39:1384–1389

    Article  CAS  PubMed  Google Scholar 

  5. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949

    Article  CAS  PubMed  Google Scholar 

  6. Kidd JM et al (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453(7191):56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee AS et al (2008) Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Hum Mol Genet 17:1127–1136

    Article  CAS  PubMed  Google Scholar 

  8. Perry GH et al (2006) Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci U S A 103:8006–8011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Redon R et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glessner JT et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bochukova EG et al (2010) Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463:666–670

    Article  CAS  PubMed  Google Scholar 

  12. Shlien A, Malkin D (2009) Copy number variations and cancer. Genome Med 1(6):62

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen EY, Dobrinski KP, Brown KH, Clagg R, Edelman E, Ignatius MS et al (2013) Cross-species array comparative genomic hybridization identifies novel oncogenic events in zebrafish and human embryonal rhabdomyosarcoma. PLoS Genet 9(8):e1003727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Howe K, Clark M, Stemple D (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  PubMed  Google Scholar 

  16. Carpio Y, Estrada M (2006) Zebrafish as a genetic model organism. Biotecnol Apl 23:4

    Google Scholar 

  17. Brown KH, Dobrinski KP, Lee AS, Gokcumen O, Mills RE, Shi X et al (2012) Extensive genetic diversity and substructuring among zebrafish strains revealed through copy number variant analysis. Proc Natl Acad Sci U S A 109(2):529–534

    Article  CAS  PubMed  Google Scholar 

  18. Bryois J, Buil A, Evans DM, Kemp JP, Montgomery SB, Conrad DF, Ho KM, Ring S, Hurles M, Deloukas P, Davey Smith G et al (2014) Cis and trans effects of human genomic variants on gene expression. PLoS Genet 10(7):e1004461

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stranger B, Forrest M et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315(5813):848–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schadt E et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297

    Article  CAS  PubMed  Google Scholar 

  21. Chesler EJ, Lu L et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242

    Article  CAS  PubMed  Google Scholar 

  22. Stranger B, Forrest M et al (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1(6):e78

    Article  PubMed  PubMed Central  Google Scholar 

  23. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  24. GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585

    Article  Google Scholar 

  25. Stranger B, Montgomery S et al (2012) Patterns of cis regulatory variation in diverse human populations. PLoS Genet 8(4):e1002639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Q, Seo J, Stranger B et al (2013) Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152(3):633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pickrell J, Marioni JC et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Science 464(7289):768–772

    CAS  Google Scholar 

  28. Liang L, Morar N et al (2013) A cross-platform analysis of 14 177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res 23(4):716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kreimer A, Pe’er I (2013) Variants in exons and in transcription factors affect gene expression in trans. Genome Biol 14(7):R71

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheung V, Nayak R, Wang I, Elwyn S, Cousins S, Morley M, Spielman R (2010) Polymorphic cis and trans-regulation of human gene expression. PLoS Biol 8(9):e1000480

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schlattl A, Anders S, Waszak SM, Huber W, Korbel JO (2011) Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res 21(12):2004–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montgomery S, Sammeth M, Gutierrez-Arcelus M et al (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Science 464(7289):773–777

    CAS  Google Scholar 

  33. Tian L, Quitadamo A, Lin F, Shi XM (2014) Methods for population-based eQTL analysis in human genetics. Tsinghua Sci Technol 19:624–634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jason Dobrinski for his assistance with Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly P. Dobrinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dobrinski, K.P. (2020). Tissue-Specific eQTL in Zebrafish. In: Shi, X. (eds) eQTL Analysis. Methods in Molecular Biology, vol 2082. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0026-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0026-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0025-2

  • Online ISBN: 978-1-0716-0026-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics