Skip to main content

Normal Cell

  • Chapter
  • First Online:
Urological Oncology

Abstract

The mental image of a cell as akin to a water filled balloon with bits of assorted size floating around freely is so conceptual wrong that to hold on to it will prevent you from ever understand molecular medicine. The cell is an incredibly complex structure that senses it environment and respond to it in increasingly surprising ways: It knows up from down in the sense that it orientates structures in relation to basal cell to cell adhesion microstructures, to maintaining opposing surface luminal integratory by producing huge repeating peptides drenched in sugars (mucins) that prevent cells coming close to each other and sticking. The multiple scaffolding polypeptides inside not only holds the cell shape but senses cell to cell contacts, regulate solutes and organelle trafficking, allow tissue or individual cell contraction and movement. These cytoskeletal core and associated proteins are controlled by, but equally regulate, gene expression.

The deregulation of multiple proteins implicit in the functioning of this highly organised structured and yet adaptive cell, often leads to dysplasia and eventually cancer. The more cancer genes we discover, the more we learn about another complex control and yet key, system of the collective we simply term as “the cell”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paulson M. Basement membrane proteins: structure, assembly and cellular interaction. Crit Rev Biochem Mol Biol. 1992;27:93–127.

    Article  Google Scholar 

  2. Carew JS, Huang P. Review: mitochondrial defects in cancer. Mol Cancer. 2002;1:9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wong X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15:2922–33.

    Google Scholar 

  4. Frey TG, Mannella CA. The internal structure of mitochondria. Trends Biochem Sci. 2000;25:319–24.

    Article  CAS  PubMed  Google Scholar 

  5. Horton TM, Petros JA, Heddi A. Novel mitochondrial genome in a renal cell carcinoma. Genes Chromosomes Cancer. 1996;15:95–101.

    Article  CAS  PubMed  Google Scholar 

  6. Selvanayagam P, Rajaraman S. Detection of mitochondrial genome depletion by a novel cDNA in renal cell carcinoma. Lab Invest. 1996;74:592–9.

    CAS  PubMed  Google Scholar 

  7. Jessie BC, Sun CQ, Irons HR, et al. Accumulation of mitochondrial DNA deletions in the malignant prostate of patients of different ages. Exp Gerontol. 2001;37:169–74.

    Article  CAS  PubMed  Google Scholar 

  8. Ogura M, Shibata T, Yi J, et al. A tumor-specifi c gene therapy strategy targeting dysregulation of the VHL/HIF pathway in renal cell carcinomas. Cancer Sci. 2005;96:288–94.

    Article  CAS  PubMed  Google Scholar 

  9. Haynes MD, Martin TA, Jenkins SA, et al. Tight junctions and bladder cancer (review). Int J Mol Med. 2005;16:3–9.

    CAS  PubMed  Google Scholar 

  10. Rosen EM, Joseph A, Jin L, et al. Urinary and tissue levels of scatter factor in transitional cell carcinoma of bladder. J Urol. 1997;157:72–8.

    Article  CAS  PubMed  Google Scholar 

  11. Li B, Kanamaru H, Noriki S, et al. Differential expression of hepatocyte growth factor in papillary and nodular tumors of the bladder. Int J Urol. 1998;5:436–40.

    Article  CAS  PubMed  Google Scholar 

  12. Inoue K, Slaton JW, Kim SJ, et al. Interleukin-8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res. 2000;60:2290–9.

    CAS  PubMed  Google Scholar 

  13. Lipponen PK, Eskelinen MJ. Reduced expression of E-cadherin is related to invasive disease and frequent recurrence in bladder cancer. J Cancer Res Clin Oncol. 1995;121:303–8.

    Article  CAS  PubMed  Google Scholar 

  14. Rashid MG, Sanda MG, Vallorosi CJ, et al. Posttranslational truncation and inactivation of human E-cadherin distinguishes prostate cancer from matched normal prostate. Cancer Res. 2001;61:489–92.

    CAS  PubMed  Google Scholar 

  15. Conn IG, Vilela MJ, Garrod DR, et al. Immunohistochemical staining with monoclonal antibody 32–2B to desmosomal glycoprotein 1. Its role in the histological assessment of Urothelial carcinomas. Br J Urol. 1990;65:176–80.

    Article  CAS  PubMed  Google Scholar 

  16. Okegawa T, Li Y, Pong RC, Hsieh JT. Cell adhesion proteins as tumor suppressors. J Urol. 2002;167(4):1836–43.

    Article  CAS  PubMed  Google Scholar 

  17. Jung I, Messing E. Molecular mechanisms and pathways in bladder cancer development and progression. Cancer Control. 2000;7:325–34.

    CAS  PubMed  Google Scholar 

  18. Liebert M, Washington R, Wedemeyer G, et al. Loss of co-localization of alpha 6 beta 4 integrin and collagen VII in bladder cancer. Am J Pathol. 1994;144:787–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Uings IJ, Farrow SN. Cell receptors and signalling. J Clin Path Mol Pathol. 2000;53:295–9.

    Article  CAS  Google Scholar 

  20. Lindquist S, Craig EA. The heat shock proteins. Annu Rev Genet. 1988;22:631–7.

    Article  CAS  PubMed  Google Scholar 

  21. Clocca DR, Calderwood SK. Mini-review: heat shock proteins in cancer: diagnostic, prognostic, predictive and treatment implications. Cell Stress Chaperones. 2005;10:86–103.

    Article  Google Scholar 

  22. Cornford PA, Dodson AR, Parsons KF, et al. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 2000;60:7099–105.

    CAS  PubMed  Google Scholar 

  23. Renehan AG, Booth C. What is apoptosis, and why is it important? BMJ. 2001;322:1536–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hengartner MO. Death cycle and Swiss army knives. Nature. 1998;391:441–2.

    Article  CAS  PubMed  Google Scholar 

  25. Yang E, Korsmeyer SJ. Molecular thanaptosis: a discourse on the Bcl-2 family and cell death. Blood. 1996;88:386–401.

    CAS  PubMed  Google Scholar 

  26. Wallace-Brodeuer RR, Low SW. Clinical implications of p53 mutations. Cell Mol Life Sci. 1999;55:64–75.

    Article  Google Scholar 

  27. Sjostrom J, Bergh J. How apoptosis is regulated, and what goes wrong in cancer. BMJ. 2001;322:1538–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Flint J, Craddock CF, Villegas A, et al. Healing of broken human chromosomes by addition of telomeric repeats. Am J Hum Genet. 1994;55:505–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim NW, Piatyszek MA, Prowse KR, et al. Specifi c association of human telomerase activity with immortal cell and cancer. Science. 1994;266:2011–5.

    Article  CAS  PubMed  Google Scholar 

  30. Sommerfield HJ, Meeker AK, Piatyszek MA, Bova GS, et al. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res. 1996;56:218–22.

    Google Scholar 

  31. Biroccio A, Leonetti C. Review: telomerase as a new target for the treatment of hormone-refractory prostate cancer. Endocr Relat Cancer. 2004;11:407–21.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida K, Ugino T, Tahara H, et al. Telomerase activity in bladder carcinoma and its implication for non-invasive diagnosis by detection of exfoliated cancer cells in the urine. Cancer. 1997;79:362–9.

    Article  CAS  PubMed  Google Scholar 

  33. Jones JB, Song JJ, Hempen PM, et al. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res. 2001;61:1299–304.

    CAS  PubMed  Google Scholar 

  34. Croteau DL, Bohr VA. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem. 1997;272:25409–12.

    Article  CAS  PubMed  Google Scholar 

  35. Vessey CJ, Norbury CJ, Hickson ID. Geneic disorders associated with cancer predisposition and genetic stability. Prog Nucleic Acid Res Mol Biol. 1999;63:189–221.

    Article  CAS  PubMed  Google Scholar 

  36. Matzke MA, Mette MF, Kanno T, Matzke AJ. Does the intrinsic instability of aneuploid genomes have a causal role in cancer? Trends Genet. 2003;19:253–6.

    Article  CAS  PubMed  Google Scholar 

  37. Berrozpe G, Miro R, Caballin MR, et al. Trisomy 7 may be a primary changes in noninvasive transitional cell carcinoma of the bladder. Cancer Genet Cytogenet. 1990;50:9–14.

    Article  CAS  PubMed  Google Scholar 

  38. Birch JM, Hartley AL, Tricker KJ, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54:1298–304.

    CAS  PubMed  Google Scholar 

  39. Peltomäki P, Vasen H. Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers. 2004;20(4–5):269–76.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sasaki H, Allen NA, Surani MA. DNA methylation and genomic imprinting in mammals. In: Jost JP, Saluz HP, editors. DNA methylation: molecular and biological significance. Basel: Birkhauser Verlag; 1992. p. 469–88.

    Google Scholar 

  41. Schilz WA. DNA methylation in urological malignancies (review). Int J Urol. 1998;13:151–67.

    Google Scholar 

  42. Drajani TA, Canzian F, Pierotti MA. A polygenic model of inherited predisposition to cancer. FASEB J. 1996;10:865–70.

    Google Scholar 

  43. Campisi J. Cancer and aging: rival demons? Nat Rev Cancer. 2003;3:339–49.

    Article  CAS  PubMed  Google Scholar 

  44. Lavrik I, Golks A, Krammer PH. Death receptor signalling. J Cell Sci. 2005;118:265–7.

    Article  CAS  PubMed  Google Scholar 

  45. Carter BS, Beatty TH, Steinberg GD, et al. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A. 1992;89:3367–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hatada I, Inazawa J, Abe T, et al. Genomic imprinting of human p57KIP2 and its reduced expression in Wilms’ tumors. Hum Mol Genet. 1996;5:783–8.

    Article  CAS  PubMed  Google Scholar 

  47. Roupret M, Fromont G, Azzouzi AR, et al. Microsatellite instability as predictor of survival in patients with invasive upper urinary tract transitional cell carcinoma. Urology. 2005;65(6):1233–7.

    Article  PubMed  Google Scholar 

  48. Bergers G, Benjamin LE. Tumorigenesis and angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    Article  CAS  PubMed  Google Scholar 

  49. Kalluri R. Basement membranes: structure assembly and role in tumorigenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  CAS  PubMed  Google Scholar 

  50. Gerbert HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998;273:30336–43.

    Article  Google Scholar 

  51. Rak J, Yu JL, Kerbel RS. Oncogenes and angiogenesis: signalling three-dimensional tumor growth. J Investig Dermatol Symp Proc. 2000;5:24–33.

    Article  CAS  PubMed  Google Scholar 

  52. Kerbel RS, Viloria-Petit A, Okada F, Rak J. Establishing a link between oncogenes and tumour angiogenesis. Mol Med. 1998;4:286–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Nakagawa M, Emoto A, Hanada T, et al. Tubulogenesis by microvascular endothelial cells is mediated by vascular endothelial growth factor(VEGF) in renal cell carcinoma. Br J Urol. 1997;79:681–7.

    Article  CAS  PubMed  Google Scholar 

  54. Jaeger T, Weidner N, Chew K, et al. tumor angiogenesis correlates with lymph node metastasis in invasive bladder cancer. J Urol. 1995;154:69–71.

    Article  CAS  PubMed  Google Scholar 

  55. Inoue K, Slaton JW, Karashima T, et al. The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clin Cancer Res. 2000;6:4866–73.

    CAS  PubMed  Google Scholar 

  56. Bernardini S, Fauconnet S, Chabannes E, et al. Serum levels of vascular endothelial growth factor as a prognostic factor in bladder cancer. J Urol. 2001;166:1275–9.

    Article  CAS  PubMed  Google Scholar 

  57. Borre M, Nerstrom B, Overgaard J. Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res. 2000;6:1882–90.

    CAS  PubMed  Google Scholar 

  58. Fukuda S, Shiriham T, Imazono Y, et al. Expression of vascular endothelial growth factor in patients with testicular germ cell tumours as an indicator of metastatic disease. Cancer. 1999;85:1323–30.

    Article  CAS  PubMed  Google Scholar 

  59. Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E. Cancer biomarkers: a systems approach. Nat Biotechnol. 2006;24(8):905–8.

    Article  CAS  PubMed  Google Scholar 

  60. Troyer DA, Mubiru J, Leach RJ, Naylor SL. Promise and challenge: markers of prostate cancer detection, diagnosis and prognosis. Dis Markers. 2004;20:117–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Adam BL, Vlahou A, Semmes OJ, Wright Jr GL. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics. 2001;1:1264–70.

    Article  CAS  PubMed  Google Scholar 

  62. Kashyap MK, Kumar A, Emelianenko N, et al. Biochemical and molecular markers in renal cell carcinoma: an update and future prospects. Biomarkers. 2005;10:258–94.

    Article  CAS  PubMed  Google Scholar 

  63. Fan TW, Lane AN, Higashi RM. The promise of metabolomics in cancer molecular therapeutics. Curr Opin Mol Ther. 2004;6(6):584–92.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray K. Iles PhD, CBiol, FSB, FRSC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Iles, R.K. (2015). Normal Cell. In: Nargund, V., Raghavan, D., Sandler, H. (eds) Urological Oncology. Springer, London. https://doi.org/10.1007/978-0-85729-482-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-482-1_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-481-4

  • Online ISBN: 978-0-85729-482-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics