Skip to main content

Challenges for Pain Management in the Twenty-First Century

  • Chapter
  • First Online:
Cancer Pain

Abstract

Pain occurs in 20 % of the population, 50 % of patients who present with cancer have pain and 70 % of patients with advanced cancer will have acute and chronic pain. Opioids are the standard treatment of choice, but half of patients experience side effects which can reduce quality of life. Chronic pain is the result of central neuroplasticity and hypersensitivity. Within disease entities, there are different pain phenotypes which are generated by distinct mechanisms, and each phenotype in turn has different responses to analgesics. Analgesics such as opioids selectively bias signalling from mu, kappa, and delta receptors. Receptor responses are modulated by homotropic and heterotropic tolerance mechanisms. Combinations of opioids may modulate responses through single receptors or dimers and reestablish nociception in animal models. This is particularly seen with methadone and morphine. Bivalent opioids are reported to reduce psychologic dependence (as measured by reduced conditioned place preference in animal models), improve analgesia, and reduce side effects presumably through interactions on opioid dimers. Multivalent opioid/non-opioid receptor drugs and opioid-monoamine transporter inhibitor bivalent analgesics are available and have advantages compared to opioid monomers, as demonstrated in certain animal models and clinical situations. The key to analgesic development is to target pain phenotypes with selective analgesics initially in animal models then validate results through enrichment designed trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolf CJ. Overcoming obstacles to developing new analgesics. Nat Med. 2010;16(11):1241–7.

    Article  PubMed  CAS  Google Scholar 

  2. Compton P, Charuvastra VC, Ling W. Pain intolerance in opioid-maintained former opiate addicts: effect of long-acting maintenance agent. Drug Alcohol Depend. 2001;63(2):139–46.

    Article  PubMed  CAS  Google Scholar 

  3. Basbaum AI et al. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.

    Article  PubMed  CAS  Google Scholar 

  4. McMahon SB, Malcangio M. Current challenges in glia-pain biology. Neuron. 2009;64(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  5. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.

    Article  PubMed  Google Scholar 

  6. Saito YA, Mitra N, Mayer EA. Genetic approaches to functional gastrointestinal disorders. Gastroenterology. 2010;138(4):1276–85.

    Article  PubMed  CAS  Google Scholar 

  7. Fischer TZ, Waxman SG. Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann N Y Acad Sci. 2010;1184:196–207.

    Article  PubMed  CAS  Google Scholar 

  8. Tegeder I, Lotsch J. Current evidence for a modulation of low back pain by human genetic variants. J Cell Mol Med. 2009;13(8B):1605–19.

    Article  PubMed  Google Scholar 

  9. Bouhassira D, Attal N. Diagnosis and assessment of neuropathic pain: the saga of clinical tools. Pain. 2011;152(3 Suppl):S74–83.

    Article  PubMed  Google Scholar 

  10. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765–9.

    Article  PubMed  CAS  Google Scholar 

  11. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    Article  PubMed  Google Scholar 

  12. Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res. 2011;1381:187–201.

    Article  PubMed  CAS  Google Scholar 

  13. Yeung JC, Rudy TA. Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J Pharmacol Exp Ther. 1980;215(3):633–42.

    PubMed  CAS  Google Scholar 

  14. Yeung JC, Rudy TA. Sites of antinociceptive action of systemically injected morphine: involvement of supraspinal loci as revealed by intracerebroventricular injection of naloxone. J Pharmacol Exp Ther. 1980;215(3):626–32.

    PubMed  CAS  Google Scholar 

  15. Kolesnikov YA et al. Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J Pharmacol Exp Ther. 1996;279(2):502–6.

    PubMed  CAS  Google Scholar 

  16. Rashid MH et al. Loss of peripheral morphine analgesia contributes to the reduced effectiveness of systemic morphine in neuropathic pain. J Pharmacol Exp Ther. 2004;309(1):380–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kolesnikov YA, Oksman G, Pasternak GW. Topical methadone and meperidine analgesic synergy in the mouse. Eur J Pharmacol. 2010;638(1–3):61–4.

    Article  PubMed  CAS  Google Scholar 

  18. Stein C. Peripheral mechanisms of opioid analgesia. Anesth Analg. 1993;76(1):182–91.

    Article  PubMed  CAS  Google Scholar 

  19. Young 3rd WS et al. Opioid receptors undergo axonal flow. Science. 1980;210(4465):76–8.

    Article  PubMed  CAS  Google Scholar 

  20. Laduron PM. Axonal transport of opiate receptors in capsaicin-sensitive neurones. Brain Res. 1984;294(1):157–60.

    Article  PubMed  CAS  Google Scholar 

  21. Gendron L et al. Morphine priming in rats with chronic inflammation reveals a dichotomy between antihyperalgesic and antinociceptive properties of deltorphin. Neuroscience. 2007;144(1):263–74.

    Article  PubMed  CAS  Google Scholar 

  22. Vetter I et al. The effects of pH on beta-endorphin and morphine inhibition of calcium transients in dorsal root ganglion neurons. J Pain. 2006;7(7):488–99.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, Bao L, Guan JS. Role of delivery and trafficking of delta-opioid peptide receptors in opioid analgesia and tolerance. Trends Pharmacol Sci. 2006;27(6):324–9.

    Article  PubMed  CAS  Google Scholar 

  24. Yamdeu RS et al. p38 Mitogen-activated protein kinase activation by nerve growth factor in primary sensory neurons upregulates mu-opioid receptors to enhance opioid responsiveness toward better pain control. Anesthesiology. 2011;114(1):150–61.

    Article  PubMed  CAS  Google Scholar 

  25. Stein C, Schafer M, Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med. 2003;9(8):1003–8.

    Article  PubMed  CAS  Google Scholar 

  26. Zollner C et al. Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. J Clin Invest. 2008;118(3):1065–73.

    PubMed  Google Scholar 

  27. Craft RM et al. Opioid antinociception in a rat model of visceral pain: systemic versus local drug admin­istration. J Pharmacol Exp Ther. 1995;275(3):1535–42.

    PubMed  CAS  Google Scholar 

  28. Shannon HE, Lutz EA. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology. 2002;42(2):253–61.

    Article  PubMed  CAS  Google Scholar 

  29. Machelska H et al. Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neuroimmunol. 2003;141(1–2):30–9.

    Article  PubMed  CAS  Google Scholar 

  30. DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents. Curr Pharm Des. 2004;10(7):743–57.

    Article  PubMed  CAS  Google Scholar 

  31. Kindler LL et al. Drug response profiles to experimental pain are opioid and pain modality specific. J Pain. 2011;12(3):340–51.

    PubMed  CAS  Google Scholar 

  32. Cahill CM et al. Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci. 2001;21(19):7598–607.

    PubMed  CAS  Google Scholar 

  33. Zhang Z, Pan ZZ. Synaptic mechanism for functional synergism between delta- and mu-opioid receptors. J Neurosci. 2010;30(13):4735–45.

    Article  PubMed  CAS  Google Scholar 

  34. Wang HB et al. Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci USA. 2010;107(29):13117–22.

    Article  PubMed  CAS  Google Scholar 

  35. Horan P et al. Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: supra- and sub-additivity. Life Sci. 1992;50(20):1535–41.

    Article  PubMed  CAS  Google Scholar 

  36. Rossi GC, Pasternak GW, Bodnar RJ. Mu and delta opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Res. 1994;665(1):85–93.

    Article  PubMed  CAS  Google Scholar 

  37. Negus SS et al. Role of delta opioid efficacy as a determinant of mu/delta opioid interactions in rhesus monkeys. Eur J Pharmacol. 2009;602(1):92–100.

    Article  PubMed  CAS  Google Scholar 

  38. Stevenson GW et al. Interactions between delta and mu opioid agonists in assays of schedule-controlled responding, thermal nociception, drug self-administration, and drug versus food choice in rhesus ­monkeys: studies with SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and heroin. J Pharmacol Exp Ther. 2005;314(1):221–31.

    Article  PubMed  CAS  Google Scholar 

  39. He SQ et al. Facilitation of mu-opioid receptor activity by preventing delta-opioid receptor-mediated codegradation. Neuron. 2011;69(1):120–31.

    Article  PubMed  CAS  Google Scholar 

  40. Tang J, Yang HY, Costa E. Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci USA. 1984;81(15):5002–5.

    Article  PubMed  CAS  Google Scholar 

  41. Chefer VI, Shippenberg TS. Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology. 2009;34(4):887–98.

    Article  PubMed  CAS  Google Scholar 

  42. Gupta A et al. Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal. 2010;3(131):ra54.

    Article  PubMed  CAS  Google Scholar 

  43. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399(6737):697–700.

    Article  PubMed  CAS  Google Scholar 

  44. Gomes I et al. G protein coupled receptor dimerization: implications in modulating receptor function. J Mol Med. 2001;79(5–6):226–42.

    Article  PubMed  CAS  Google Scholar 

  45. Jordan BA et al. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA. 2001;98(1):343–8.

    PubMed  CAS  Google Scholar 

  46. Gomes I et al. Oligomerization of opioid receptors. Methods. 2002;27(4):358–65.

    Article  PubMed  CAS  Google Scholar 

  47. Rios CD et al. G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther. 2001;92(2–3):71–87.

    Article  PubMed  CAS  Google Scholar 

  48. Abul-Husn NS et al. Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists. Br J Pharmacol. 2007;151(6):877–87.

    Article  PubMed  CAS  Google Scholar 

  49. Gomes I et al. Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci. 2000;20(22):RC110.

    PubMed  CAS  Google Scholar 

  50. Gomes I et al. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA. 2004;101(14):5135–9.

    Article  PubMed  CAS  Google Scholar 

  51. Ballet S, Pietsch M, Abell AD. Multiple ligands in opioid research. Protein Pept Lett. 2008;15(7):668–82.

    Article  PubMed  CAS  Google Scholar 

  52. Schiller PW et al. The opioid mu agonist/delta antagonist DIPP-NH(2)[Psi] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats. J Med Chem. 1999;42(18):3520–6.

    Article  PubMed  CAS  Google Scholar 

  53. Horan PJ et al. Antinociceptive profile of biphalin, a dimeric enkephalin analog. J Pharmacol Exp Ther. 1993;265(3):1446–54.

    PubMed  CAS  Google Scholar 

  54. Lipkowski AW, Konecka AM, Sadowski B. Double enkephalins. Pol J Pharmacol Pharm. 1982;34(1–3):69–71.

    PubMed  CAS  Google Scholar 

  55. Costa T et al. Receptor binding and biological activity of bivalent enkephalins. Biochem Pharmacol. 1985;34(1):25–30.

    Article  PubMed  CAS  Google Scholar 

  56. Lazarus LH et al. Dimeric dermorphin analogues as mu-receptor probes on rat brain membranes. Correlation between central mu-receptor potency and suppression of gastric acid secretion. J Biol Chem. 1989;264(1):354–62.

    PubMed  CAS  Google Scholar 

  57. Jinsmaa Y et al. Oral bioavailability of a new class of micro-opioid receptor agonists containing 3,6-bis[Dmt-NH(CH(2))(n)]-2(1H)-pyrazinone with central-mediated analgesia. J Med Chem. 2004;47(10):2599–610.

    Article  PubMed  CAS  Google Scholar 

  58. Okada Y et al. Unique high-affinity synthetic ­mu-opioid receptor agonists with central- and ­systemic-mediated analgesia. J Med Chem. 2003;46(15):3201–9.

    Article  PubMed  CAS  Google Scholar 

  59. Bryant SD et al. Dmt and opioid peptides: a potent alliance. Biopolymers. 2003;71(2):86–102.

    Article  PubMed  CAS  Google Scholar 

  60. Freye E, Latasch L, Portoghese PS. The delta receptor is involved in sufentanil-induced respiratory depression – opioid subreceptors mediate different effects. Eur J Anaesthesiol. 1992;9(6):457–62.

    PubMed  CAS  Google Scholar 

  61. Weltrowska G et al. A chimeric opioid peptide with mixed mu agonist/delta antagonist properties. J Pept Res. 2004;63(2):63–8.

    Article  PubMed  CAS  Google Scholar 

  62. Kalso E. Improving opioid effectiveness: from ideas to evidence. Eur J Pain. 2005;9(2):131–5.

    Article  PubMed  CAS  Google Scholar 

  63. Petrov RR et al. Synthesis and evaluation of 3-aminopropionyl substituted fentanyl analogues for opioid activity. Bioorg Med Chem Lett. 2006;16(18):4946–50.

    Article  PubMed  CAS  Google Scholar 

  64. Gentilucci L. New trends in the development of opioid peptide analogues as advanced remedies for pain relief. Curr Top Med Chem. 2004;4(1):19–38.

    Article  PubMed  CAS  Google Scholar 

  65. Abdelhamid EE et al. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. 1991;258(1):299–303.

    PubMed  CAS  Google Scholar 

  66. Daniels DJ et al. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc Natl Acad Sci USA. 2005;102(52):19208–13.

    Article  PubMed  CAS  Google Scholar 

  67. Portoghese PS et al. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J Med Chem. 1986;29(10):1855–61.

    Article  PubMed  CAS  Google Scholar 

  68. Lenard NR, Roerig SC. Development of antinociceptive tolerance and physical dependence following morphine i.c.v. infusion in mice. Eur J Pharmacol. 2005;527(1–3):71–6.

    Article  PubMed  CAS  Google Scholar 

  69. Lee YS et al. Design and synthesis of novel hydrazide-linked bifunctional peptides as delta/mu opioid receptor agonists and CCK-1/CCK-2 receptor antagonists. J Med Chem. 2006;49(5):1773–80.

    Article  PubMed  CAS  Google Scholar 

  70. Foran SE et al. A substance P-opioid chimeric peptide as a unique nontolerance-forming analgesic. Proc Natl Acad Sci USA. 2000;97(13):7621–6.

    Article  PubMed  CAS  Google Scholar 

  71. Lattanzi R et al. Synthesis and biological evaluation of 14-alkoxymorphinans. 22.(1) Influence of the 14-alkoxy group and the substitution in position 5 in 14-alkoxymorphinan-6-ones on in vitro and in vivo activities. J Med Chem. 2005;48(9):3372–8.

    Article  PubMed  CAS  Google Scholar 

  72. Ananthan S et al. Synthesis, opioid receptor binding, and biological activities of naltrexone-derived pyrido- and pyrimidomorphinans. J Med Chem. 1999;42(18):3527–38.

    Article  PubMed  CAS  Google Scholar 

  73. Wells JL et al. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. J Pharmacol Exp Ther. 2001;297(2):597–605.

    PubMed  CAS  Google Scholar 

  74. Ananthan S et al. Identification of opioid ligands ­possessing mixed micro agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone ­[correction of hydropmorphone]. J Med Chem. 2004;47(6):1400–12.

    Article  PubMed  CAS  Google Scholar 

  75. Pasternak GW. Molecular insights into mu opioid pharmacology: from the clinic to the bench. Clin J Pain. 2010;26 Suppl 10:S3–9.

    Article  PubMed  Google Scholar 

  76. Chang A et al. Methadone analgesia in morphine-insensitive CXBK mice. Eur J Pharmacol. 1998;351(2):189–91.

    Article  PubMed  CAS  Google Scholar 

  77. Abbadie C, Pasternak GW. Differential in vivo internalization of MOR-1 and MOR-1C by morphine. Neuroreport. 2001;12(14):3069–72.

    Article  PubMed  CAS  Google Scholar 

  78. Tanowitz M, Hislop JN, von Zastrow M. Alternative splicing determines the post-endocytic sorting fate of G-protein-coupled receptors. J Biol Chem. 2008;283(51):35614–21.

    Article  PubMed  CAS  Google Scholar 

  79. Abbadie C, Pan YX, Pasternak GW. Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol. 2000;419(2):244–56.

    Article  PubMed  CAS  Google Scholar 

  80. Sanchez-Blazquez P, Gomez-Serranillos P, Garzon J. Agonists determine the pattern of G-protein activation in mu-opioid receptor-mediated supraspinal analgesia. Brain Res Bull. 2001;54(2):229–35.

    Article  PubMed  CAS  Google Scholar 

  81. Sanchez-Blazquez P, Garzon J. Delta opioid receptor subtypes activate inositol-signalling pathways in the production of antinociception. J Pharmacol Exp Ther. 1998;285(2):820–7.

    PubMed  CAS  Google Scholar 

  82. Garzon J, Martinez-Pena Y, Sanchez-Blazquez P. Gx/z is regulated by mu but not delta opioid receptors in the stimulation of the low Km GTPase activity in mouse periaqueductal grey matter. Eur J Neurosci. 1997;9(6):1194–200.

    Article  PubMed  CAS  Google Scholar 

  83. Garzon J, Garcia-Espana A, Sanchez-Blazquez P. Opioids binding mu and delta receptors exhibit diverse efficacy in the activation of Gi2 and G(x/z) transducer proteins in mouse periaqueductal gray matter. J Pharmacol Exp Ther. 1997;281(1):549–57.

    PubMed  CAS  Google Scholar 

  84. Bolan EA, Tallarida RJ, Pasternak GW. Synergy between mu opioid ligands: evidence for functional interactions among mu opioid receptor subtypes. J Pharmacol Exp Ther. 2002;303(2):557–62.

    Article  PubMed  CAS  Google Scholar 

  85. Smith MT. Differences between and combinations of opioids re-visited. Curr Opin Anaesthesiol. 2008;21(5):596–601.

    Article  PubMed  Google Scholar 

  86. Virk MS, Williams JT. Agonist-specific regulation of mu-opioid receptor desensitization and recovery from desensitization. Mol Pharmacol. 2008;73(4):1301–8.

    Article  PubMed  CAS  Google Scholar 

  87. Nielsen CK et al. Oxycodone and morphine have distinctly different pharmacological profiles: radioligand binding and behavioural studies in two rat models of neuropathic pain. Pain. 2007;132(3):289–300.

    Article  PubMed  CAS  Google Scholar 

  88. Staahl C et al. Differential effect of opioids in patients with chronic pancreatitis: an experimental pain study. Scand J Gastroenterol. 2007;42(3):383–90.

    Article  PubMed  CAS  Google Scholar 

  89. Blumenthal S et al. Postoperative intravenous morphine consumption, pain scores, and side effects with perioperative oral controlled-release oxycodone after lumbar discectomy. Anesth Analg. 2007;105(1):233–7.

    Article  PubMed  CAS  Google Scholar 

  90. Sima L et al. Efficacy of oxycodone/paracetamol for patients with bone-cancer pain: a multicenter, randomized, double-blinded, placebo-controlled trial. J Clin Pharm Ther. 2012;37(1):27–31.

    Article  PubMed  CAS  Google Scholar 

  91. Andresen T et al. Effect of transdermal opioids in experimentally induced superficial, deep and hyperalgesic pain. Br J Pharmacol. 2011;164(3):934–45.

    Article  PubMed  CAS  Google Scholar 

  92. Uhl GR, Childers S, Pasternak G. An opiate-receptor gene family reunion. Trends Neurosci. 1994;17(3):89–93.

    Article  PubMed  CAS  Google Scholar 

  93. North RA, Williams JT. Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurones. Br J Pharmacol. 1983;80(2):225–8.

    Article  PubMed  CAS  Google Scholar 

  94. Smart D, Lambert DG. The stimulatory effects of opioids and their possible role in the development of tolerance. Trends Pharmacol Sci. 1996;17(7):264–9.

    Article  PubMed  CAS  Google Scholar 

  95. Crain SM, Shen K. Enhanced analgesic potency and reduced tolerance of morphine in 129/SvEv mice: evidence for a deficiency in GM1 ganglioside-regulated excitatory opioid receptor functions. Brain Res. 2000;856(1–2):227–35.

    Article  PubMed  CAS  Google Scholar 

  96. Crain SM, Shen KF. Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proc Natl Acad Sci USA. 1995;92(23):10540–4.

    Article  PubMed  CAS  Google Scholar 

  97. Wang HY et al. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signalling. Neuroscience. 2005;135(1):247–61.

    Article  PubMed  CAS  Google Scholar 

  98. Powell KJ et al. Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats. J Pharmacol Exp Ther. 2002;300(2):588–96.

    Article  PubMed  CAS  Google Scholar 

  99. Lin SL et al. Co-administration of ultra-low dose naloxone attenuates morphine tolerance in rats via attenuation of NMDA receptor neurotransmission and suppression of neuroinflammation in the spinal cords. Pharmacol Biochem Behav. 2010;96(2):236–45.

    Article  PubMed  CAS  Google Scholar 

  100. Gan TJ et al. Opioid-sparing effects of a low-dose infusion of naloxone in patient-administered morphine sulfate. Anesthesiology. 1997;87(5):1075–81.

    Article  PubMed  CAS  Google Scholar 

  101. Maxwell LG et al. The effects of a small-dose naloxone infusion on opioid-induced side effects and analgesia in children and adolescents treated with intravenous patient-controlled analgesia: a double-blind, prospective, randomized, controlled study. Anesth Analg. 2005;100(4):953–8.

    Article  PubMed  CAS  Google Scholar 

  102. Wang JJ, Ho ST, Tzeng JI. Comparison of intravenous nalbuphine infusion versus naloxone in the prevention of epidural morphine-related side effects. Reg Anesth Pain Med. 1998;23(5):479–84.

    PubMed  CAS  Google Scholar 

  103. Rebel A, Sloan P, Andrykowski M. Postoperative analgesia after radical prostatectomy with high-dose intrathecal morphine and intravenous naloxone: a retrospective review. J Opioid Manag. 2009;5(6):331–9.

    PubMed  Google Scholar 

  104. Hamann S, Sloan P. Oral naltrexone to enhance analgesia in patients receiving continuous intrathecal morphine for chronic pain: a randomized, double-blind, prospective pilot study. J Opioid Manag. 2007;3(3):137–44.

    PubMed  Google Scholar 

  105. Bernier V, Bichet DG, Bouvier M. Pharmacological chaperone action on G-protein-coupled receptors. Curr Opin Pharmacol. 2004;4(5):528–33.

    Article  PubMed  CAS  Google Scholar 

  106. Simpson K et al. Fixed-ratio combination oxycodone/naloxone compared with oxycodone alone for the relief of opioid-induced constipation in moderate-to-severe noncancer pain. Curr Med Res Opin. 2008;24(12):3503–12.

    Article  PubMed  CAS  Google Scholar 

  107. Vondrackova D et al. Analgesic efficacy and safety of oxycodone in combination with naloxone as prolonged release tablets in patients with moderate to severe chronic pain. J Pain. 2008;9(12):1144–54.

    Article  PubMed  CAS  Google Scholar 

  108. Katz N et al. Morphine sulfate and naltrexone hydrochloride extended release capsules in patients with chronic osteoarthritis pain. Postgrad Med. 2010;122(4):112–28.

    Article  PubMed  Google Scholar 

  109. Meissner W et al. A randomised controlled trial with prolonged-release oral oxycodone and naloxone to prevent and reverse opioid-induced constipation. Eur J Pain. 2009;13(1):56–64.

    Article  PubMed  CAS  Google Scholar 

  110. Brakeman PR et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997;386(6622):284–8.

    Article  PubMed  CAS  Google Scholar 

  111. Tappe A et al. Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain. Nat Med. 2006;12(6):677–81.

    Article  PubMed  CAS  Google Scholar 

  112. Xie JY et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hypera­lgesia and antinociceptive tolerance. J Neurosci. 2005;25(2):409–16.

    Article  PubMed  CAS  Google Scholar 

  113. Ossipov MH et al. Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers. 2005;80(2–3):319–24.

    Article  PubMed  CAS  Google Scholar 

  114. McLatchie LM et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393(6683):333–9.

    Article  PubMed  CAS  Google Scholar 

  115. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104(3):570–87.

    Article  PubMed  CAS  Google Scholar 

  116. Ossipov MH et al. Antinociceptive and nociceptive actions of opioids. J Neurobiol. 2004;61(1):126–48.

    Article  PubMed  CAS  Google Scholar 

  117. Johnston IN et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci. 2004;24(33):7353–65.

    Article  PubMed  CAS  Google Scholar 

  118. Hutchinson MR et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun. 2008;22(8):1178–89.

    Article  PubMed  CAS  Google Scholar 

  119. Wilson NM et al. CXCR4 signalling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun. 2011;25(3):565–73.

    Article  PubMed  CAS  Google Scholar 

  120. Hutchinson MR et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23(2):240–50.

    Article  PubMed  CAS  Google Scholar 

  121. Kolesnikov YA, Wilson RS, Pasternak GW. The synergistic analgesic interactions between hydrocodone and ibuprofen. Anesth Analg. 2003;97(6):1721–3.

    Article  PubMed  CAS  Google Scholar 

  122. Miranda HF, Sierralta F, Prieto JC. Synergism between NSAIDs in the orofacial formalin test in mice. Pharmacol Biochem Behav. 2009;92(2):314–8.

    Article  PubMed  CAS  Google Scholar 

  123. Zhou X et al. Bayesian adaptive design for targeted therapy development in lung cancer – a step toward personalized medicine. Clin Trials. 2008;5(3):181–93.

    Article  PubMed  Google Scholar 

  124. Lotsch J. Genetic variability of pain perception and treatment-clinical pharmacological implications. Eur J Clin Pharmacol. 2011;67(6):541–51.

    Article  PubMed  CAS  Google Scholar 

  125. Lotsch J, Geisslinger G. A critical appraisal of human genotyping for pain therapy. Trends Pharmacol Sci. 2010;31(7):312–7.

    Article  PubMed  CAS  Google Scholar 

  126. Lotsch J, Geisslinger G. Pharmacogenetics of new analgesics. Br J Pharmacol. 2011;163(3):447–60.

    Article  PubMed  CAS  Google Scholar 

  127. Oertel B, Lotsch J. Genetic mutations that prevent pain: implications for future pain medication. Pharmacogenomics. 2008;9(2):179–94.

    Article  PubMed  CAS  Google Scholar 

  128. Christoph T, De Vry J, Tzschentke TM. Tapentadol, but not morphine, selectively inhibits disease-related thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Neurosci Lett. 2010;470(2):91–4.

    Article  PubMed  CAS  Google Scholar 

  129. Tzschentke TM et al. Tapentadol hydrochloride: a next-generation, centrally acting analgesic with two mechanisms of action in a single molecule. Drugs Today (Barc). 2009;45(7):483–96.

    CAS  Google Scholar 

  130. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32.

    Article  PubMed  CAS  Google Scholar 

  131. Dib-Hajj SD et al. Sodium channels in normal and pathological pain. Annu Rev Neurosci. 2010;33:325–47.

    Article  PubMed  CAS  Google Scholar 

  132. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57.

    Article  PubMed  CAS  Google Scholar 

  133. Hubner A, Jaeschke A, Davis RJ. Oncogene addiction: role of signal attenuation. Dev Cell. 2006;11(6):752–4.

    Article  PubMed  CAS  Google Scholar 

  134. Rothenberg SM et al. Modeling oncogene addiction using RNA interference. Proc Natl Acad Sci USA. 2008;105(34):12480–4.

    Article  PubMed  CAS  Google Scholar 

  135. Hsieh AY et al. Comparisons of catastrophizing, pain attitudes, and cold-pressor pain experience between Chinese and European Canadian young adults. J Pain. 2010;11(11):1187–94.

    Article  PubMed  Google Scholar 

  136. Rappaport BA, Cerny I, Sanhai WR. ACTION on the prevention of chronic pain after surgery: public-private partnerships, the future of analgesic drug development. Anesthesiology. 2010;112(3):509–10.

    Article  PubMed  Google Scholar 

  137. Tracey I, Johns E. The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain. 2010;148(3):359–60.

    Article  PubMed  Google Scholar 

  138. Davis KD et al. Event-related fMRI of pain: entering a new era in imaging pain. Neuroreport. 1998;9(13):3019–23.

    Article  PubMed  CAS  Google Scholar 

  139. Schneider F et al. Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology. 2001;43(3):175–85.

    Article  PubMed  CAS  Google Scholar 

  140. Takemura Y et al. Effects of gabapentin on brain hyperactivity related to pain and sleep disturbance under a neuropathic pain-like state using fMRI and brain wave analysis. Synapse. 2011;65(7):668–76.

    Article  PubMed  CAS  Google Scholar 

  141. Borsook D, Becerra L. CNS animal fMRI in pain and analgesia. Neurosci Biobehav Rev. 2011;35(5):1125–43.

    Article  PubMed  Google Scholar 

  142. Scrivani S et al. A fMRI evaluation of lamotrigine for the treatment of trigeminal neuropathic pain: pilot study. Pain Med. 2010;11(6):920–41.

    Article  PubMed  Google Scholar 

  143. Burgmer M et al. Fibromyalgia unique temporal brain activation during experimental pain: a controlled fMRI Study. J Neural Transm. 2010;117(1):123–31.

    Article  PubMed  Google Scholar 

  144. Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 2007;449(7162):607–10.

    Article  PubMed  CAS  Google Scholar 

  145. Lui F et al. Neural bases of conditioned placebo analgesia. Pain. 2010;151(3):816–24.

    Article  PubMed  Google Scholar 

  146. Lu HC et al. Neuronal correlates in the modulation of placebo analgesia in experimentally-induced esophageal pain: a 3T-fMRI study. Pain. 2010;148(1):75–83.

    Article  PubMed  Google Scholar 

  147. Eippert F et al. Direct evidence for spinal cord involvement in placebo analgesia. Science. 2009;326(5951):404.

    Article  PubMed  CAS  Google Scholar 

  148. Petrovic P et al. A prefrontal non-opioid mechanism in placebo analgesia. Pain. 2010;150(1):59–65.

    Article  PubMed  Google Scholar 

  149. Quessy SN, Rowbotham MC. Placebo response in neuropathic pain trials. Pain. 2008;138(3):479–83.

    Article  PubMed  Google Scholar 

  150. Hrobjartsson A, Gotzsche PC. Unreliable analysis of placebo analgesia in trials of placebo pain mechanisms. Pain. 2003;104(3):714–5; author reply 715–6.

    Article  PubMed  Google Scholar 

  151. Hamunen K, Kalso E. A systematic review of trial methodology, using the placebo groups of randomized controlled trials in paediatric postoperative pain. Pain. 2005;116(1–2):146–58.

    Article  PubMed  Google Scholar 

  152. Dworkin RH, Katz J, Gitlin MJ. Placebo response in clinical trials of depression and its implications for research on chronic neuropathic pain. Neurology. 2005;65(12 Suppl 4):S7–19.

    Article  PubMed  Google Scholar 

  153. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci. 2009;10(4):283–94.

    Article  PubMed  CAS  Google Scholar 

  154. Bauer CS et al. The anti-allodynic alpha(2)delta ligand pregabalin inhibits the trafficking of the ­calcium channel alpha(2)delta-1 subunit to presynaptic terminals in vivo. Biochem Soc Trans. 2010;38(2):525–8.

    Article  PubMed  CAS  Google Scholar 

  155. Woolf CJ et al. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience. 1994;62(2):327–31.

    Article  PubMed  CAS  Google Scholar 

  156. Cattaneo A. Tanezumab, a recombinant humanized mAb against nerve growth factor for the treatment of acute and chronic pain. Curr Opin Mol Ther. 2010;12(1):94–106.

    PubMed  CAS  Google Scholar 

  157. Tegeder I et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat Med. 2006;12(11):1269–77.

    Article  PubMed  CAS  Google Scholar 

  158. Reimann F et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci USA. 2010;107(11):5148–53.

    Article  PubMed  CAS  Google Scholar 

  159. Braun SM, Jessberger S. Previews. Crossing boundaries: direct programming of fibroblasts into neurons. Cell Stem Cell. 2010;6(3):189–91.

    Article  PubMed  CAS  Google Scholar 

  160. Wernig M et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s ­disease. Proc Natl Acad Sci USA. 2008;105(15):5856–61.

    Article  PubMed  CAS  Google Scholar 

  161. Printz C. BATTLE to personalize lung cancer treatment. Novel clinical trial design and tissue gathering procedures drive biomarker discovery. Cancer. 2010;116(14):3307–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellar P. Davis MD, FCCP, FAAHPM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Davis, M.P. (2013). Challenges for Pain Management in the Twenty-First Century. In: Hanna, M., Zylicz, Z. (eds) Cancer Pain. Springer, London. https://doi.org/10.1007/978-0-85729-230-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-230-8_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-229-2

  • Online ISBN: 978-0-85729-230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics