Skip to main content

Bilinear Calderón–Zygmund Operators

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1547 Accesses

Abstract

This chapter is based on the presentation “Generalized bilinear Calderón –Zygmund operators and applications” delivered by the author during the 2008 February Fourier Talks at the Norbert Wiener Center for Harmonic Analysis and Applications, Department of Mathematics, University of Maryland, College Park, on February 21st. In turn, that presentation was based on material from the article “Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity,” J. Fourier Anal. Appl. 15 (2), (2009), 218–261, by Virginia Naibo and the author. This chapter also surveys some more recent results concerning the symbolic calculus and mapping properties of bilinear pseudo-differential operators.

The author would like to thank Professor John Benedetto for his inspiration and constant support as well as the organizers of the FFT for their kind invitation and hospitality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bényi, Á.: Bilinear singular integrals and pseudodifferential operators. Ph.D. Thesis, University of Kansas (2002)

    Google Scholar 

  2. Bényi, Á.: Bilinear pseudodifferential operators on Lipschitz and Besov spaces. J. Math. Anal. Appl. 284, 97–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseudodifferential operators. Comm. P.D.E. 28, 1161–1181 (2003)

    Google Scholar 

  4. Bényi, Á., Torres, R.H.: Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett. 11.1, 1–12 (2004)

    Google Scholar 

  5. Bényi, Á., Maldonado, D., Nahmod, A., Torres, R.H.: Bilinear paraproducts revisited. Math. Nachr. 283(9), 1257–1276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bényi, Á. Maldonado, D., Naibo, V.: What is a…paraproduct? Notices Amer. Math. Soc. 57(07), 858–860 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bényi, Á., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators. Integr. Equat. Oper. Theor. 67(3), 341–364 (2010)

    Article  MATH  Google Scholar 

  8. Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires. Annales Scientifiques de l’École Normale Supérieure Sér. 4, 14(2), 209–246 (1981)

    Google Scholar 

  9. Calderón, A., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA 69, 1185–1187 (1972)

    Article  MATH  Google Scholar 

  10. Cannone, M.: Ondelettes, paraproduits et Navier-Stokes. (French) [Wavelets, paraproducts and Navier-Stokes]. Diderot Editeur, Paris (1995)

    Google Scholar 

  11. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of mathematical fluid dynamics, vol. III, pp. 161–244. North-Holland, Amsterdam (2004)

    Google Scholar 

  12. Ching, C.-H.: Pseudo-differential operators with non-regular symbols. J. Diff. Eqns. 11, 436–447 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coifman, R.R., Meyer, Y.: Au-delà des Opérateurs Pseudo-différentiels, 2nd edn. Astèrisque 57 (1978)

    Google Scholar 

  14. Coifman, R.R., Meyer, Y.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  15. Coifman, R.R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. l’institut Fourier, 28(3), 177–202 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coifman, R.R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Coifman, R.R., Dobyinsky, S., Meyer, Y.: Opérateurs bilinéaires et renormalization. In: Fefferman, C., Fefferman, R., Wainger, S.: Essays on Fourier Analysis in Honor of Elias M. Stein. Princeton University Press, Princeton (1995)

    Google Scholar 

  18. David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. 120, 371–397 (1984)

    Article  MATH  Google Scholar 

  19. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Func. Anal. 93, 34–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, vol. 79 (1991)

    Google Scholar 

  21. Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols. I. J. Fourier Anal. Appl. 5, 435–467 (2001)

    Article  MathSciNet  Google Scholar 

  22. Gilbert, J., Nahmod, A.: L p-boundedness of time-frequency paraproducts. II. J. Fourier Anal. Appl. 8, 109–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grafakos, L., Kalton, N.: The Marcinkiewicz multiplier condition for bilinear operators. Studia Math. 146(2), 115–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grafakos, L., Torres, R.H.: Discrete decompositions for bilinear operators and almost diagonal conditions. Trans. Amer. Math. Soc. 354, 1153–1176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grafakos, L., Torres, R.H.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51(5), 1261–1276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grafakos, L., Torres, R.H.: Multilinear Calderón–Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. Proceedings of Symposium in Pure Mathematics, vol. X, pp. 138–183. American Mathematical Society, Providence (1967)

    Google Scholar 

  28. Kenig, C., Stein, E.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999). Erratum in Math. Res. Lett. 6(3–4), 467 (1999)

    Google Scholar 

  29. Kohn, J., Nirenberg, L.: An algebra of pseudo-differential operators. Comm. Pure Appl. Math. 18, 269–305 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lacey, M.: Commutators with Riesz potentials in one and several parameters. Hokkaido Math. J. 36, 175–191 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Lacey, M., Metcalfe, J.: Paraproducts in one and several parameters. Forum Math. 19, 325–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maldonado, D., Naibo, V.: On the boundedness of bilinear operators on products of Besov and Lebesgue spaces. J. Math. Anal. Appl. 352, 591–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maldonado, D., Naibo, V.: Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity. J. Fourier Anal. Appl. 15(2), 218–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mikhlin, S.: On the multipliers of Fourier integrals. Doklady Akademii Nauk SSSR, n. Ser., 109, 701–703, (1956) (in Russian)

    Google Scholar 

  35. Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers. J. Amer. Math. Soc. 15, 469–496 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Muscalu, C., Pipher, J., Tao, T., Thiele, C.: Bi-parameter paraproducts. Acta Math. 193, 269–296 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Petermichl, S.: Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbols. C. R. Acad. Sci. Paris Sèr. I Math. 330, 455–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  39. Taylor, M.: Pseudodifferential operators and nonlinear PDE. Progress in Mathematics, vol. 100. Birkhäuser, Boston, Inc., Boston, MA (1991)

    Google Scholar 

  40. Taylor, M.: Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence (2000)

    Google Scholar 

  41. Thiele, C.: Wave packet analysis. CBMS Regional Conference Series in Mathematics, vol. 105. American Mathematical Society (2006)

    Google Scholar 

  42. Yabuta, K.: Generalizations of Calderón–Zygmund operators. Studia Math. 82(1), 17–31 (1985)

    MathSciNet  MATH  Google Scholar 

  43. Yabuta, K.: Calderón–Zygmund operators and pseudodifferential operators. Comm. P.D.E. 10(9), 1005–1022 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Youssif, A.: Bilinear operators and the Jacobian-determinant on Besov spaces. Indiana Univ. Math. J. 45, 381–396 (1996)

    MathSciNet  Google Scholar 

Download references

Acknowledgment

Author supported by the NSF under grant DMS 0901587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Maldonado, D. (2013). Bilinear Calderón–Zygmund Operators. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8379-5_14

Download citation

Publish with us

Policies and ethics