Skip to main content

Hyperspectral Demixing: Sparse Recovery of Highly Correlated Endmembers

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 1

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We apply three different sparse reconstruction techniques to spectral demixing. Endmembers for these signatures are typically highly correlated, with angles near zero between the high-dimensional vectors. As a result, theoretical guarantees on the performance of standard pursuit algorithms like orthogonal matching pursuit (OMP) and basis pursuit (BP) do not apply. We evaluate the performance of OMP, BP, and a third algorithm, sparse demixing (SD), by demixing random sparse mixtures of materials selected from the USGS spectral library (Clark et al., USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data Series 231, 2007). Examining reconstruction sparsity versus accuracy shows clear success of SD and clear failure of BP. We also show that the relative geometry between endmembers creates a bias in BP reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basedow, R.W., Carmer, D.C., Anderson, M.E.: HYDICE system: implementation and performance. In: Descour, M.R., Mooney, J.M., Perry, D.L., Illing, L.R. (eds.) Proceedings of SPIE, vol. 2480 (1995)

    Google Scholar 

  2. Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., Huntington, J.: Ice: a statistical approach to identifying endmembers. IEEE Trans. Geosci. Remote Sens. 42, 2085–2095 (2004)

    Article  Google Scholar 

  3. Boardman, J.W.: Analysis, understanding and visualization of hyperspectral data as convex sets in n-space. In: Descour, M., Mooney, J.,  Perry, D.,  Illing L.  (eds.) Proceedings of SPIE, vol. 2480 (1995)

    Google Scholar 

  4. Bowles, J.H., Gillis, D.B.: An optical real-time adaptive spectral identification system (ORASIS). In: Change, C.I. (ed.) Hyperspectral Data Exploitation: Theory and Applications. Wiley, Hoboken (2007)

    Google Scholar 

  5. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theor. 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candes, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure. Appl. Math. 59(8), 1208–1223 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Scientific Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  8. Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J.: USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data Series 231 (2007)

    Google Scholar 

  9. Cocks, T., Jenssen, R., Stewart, A., Wilson, I., Shields, T.: The HyMap airborne hyperspectral sensor: The system, calibration and performance. In: First EARSEL Workshop on Imaging Spectroscopy. SPIE, Zurich (1998)

    Google Scholar 

  10. Donoho, D.L., Tanner, J.: Sparse non-negative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 102(27), 9446–9451 (2005)

    Article  MathSciNet  Google Scholar 

  11. Greer, J.B.: Sparse demixing of hyperspectral images. IEEE Trans. Image Process. 21(1), 219–228 (2012)

    Article  MathSciNet  Google Scholar 

  12. Guo, Z., Wittman, T., Osher, S.: L 1 unmixing and its application to hyperspectral image enhancement. In: Shen, S.,  Lewis, P.  (eds.) Proceedings of SPIE, vol. 7334 (2009)

    Google Scholar 

  13. Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  14. Laboratory, J.P.: AVIRIS homepage: http://aviris.jpl.nasa.gov

  15. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  16. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  17. Moussaoui, S., et al.: On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing 71, 2194–2208 (2008)

    Article  Google Scholar 

  18. Nascimento, J., Bioucas-Dias, J.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  19. Ramirez, I., Sprechmann, S., Sapiro, G.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  20. Resmini, R.G., Kappus, M.E., Aldrich, W.S., Harsanyi, J.C., Anderson, M.: Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A. Int. J. Remote Sens. 18(7), 1553–1570 (1997)

    Article  Google Scholar 

  21. Robila, S.A., Maciak, L.G.: Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing. IEEE Geosci. Remote Sens. Lett. 6(1), 57–61 (2009)

    Article  Google Scholar 

  22. Taubman, D., Marcellin, M.: JPEG2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, Boston (2001)

    Google Scholar 

  23. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Info. Theor. 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  24. Tropp, J.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Info. Theor. 52(3), 1030–1051 (2004)

    Article  MathSciNet  Google Scholar 

  25. Verrelst, J., Clevers, J., Schaepman, M.: Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBA data. IEEE Trans. Geosci. Remote Sens. 48(11), 4014–4022 (2010)

    Google Scholar 

  26. Winter, M.E.: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Descour, M.,  Shen, S.  (eds.) Proceedings of SPIE, vol. 3753 (1999)

    Google Scholar 

  27. Zhang, Z.: Matching pursuit. Ph.D. thesis, Courant Institute, New York University (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Greer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Greer, J.B. (2013). Hyperspectral Demixing: Sparse Recovery of Highly Correlated Endmembers. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8376-4_10

Download citation

Publish with us

Policies and ethics