Skip to main content

Combustion Spraying Systems

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

The growth of combustion processes along the years was driven both by scientific and technical developments providing disruptive innovations and by the market requirements )(e.g., the development of HVOF spraying by Browning in 1983 was pushed forward by the need to produce WC-Co cermet coatings with superior properties). The different processes are presented with for each one the principle, the type of materials used (powder, liquid wire cord or rod), then materials sprayed, sprayed particle temperatures, velocities and oxidation, types of coatings obtained and finally the process modeling. Successively are presented flame spraying, High Velocity Oxy-Fuel (HVOF), and High Velocity Air-Fuel spraying and modified HVOF processes and finally Detonation gun (D-gun).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D-gun:

Detonation gun

HVAF:

High Velocity Air-Fuel

HVOF:

High Velocity Oxy-Fuel

SHS:

Self-propagating High Temperature Synthesis

slm:

standard liters per minute

YSZ:

Yttria stabilized zirconia

References

  1. Anon (1913) Metal plating with the air brush, vol 1. Scientific American, New York, NY, pp 346–352

    Google Scholar 

  2. Smith RW (1991) Plasma spray processing… The state of the art and future. From a surface to a materials processing technology. In: Proceedings of the 2nd Plasma Technik symposium, Vol. 1. Plasma Technik, Wohlen, Switzerland, pp 13–38

    Google Scholar 

  3. Browning JA (1983) Highly concentrated supersonic liquefied material flame spray method and apparatus. US patent # 4,416,421, November (1983)

    Google Scholar 

  4. Thermal Spraying, Practice, Theory and Application (1985). American Welding Society, Miami, Fl

    Google Scholar 

  5. Wigren J et al (1996) On-line diagnostics of traditional flame spraying as a tool to increase reproducibility. In: Berndt CC (ed) Proceedings of national thermal spray conference. ASM International, Materials Park, OH, pp 675–681

    Google Scholar 

  6. Nylén P, Bandyopadhyay R (2000) A computational fluid dynamic analysis of gas and particle flow in flame spraying. In: Berndt CC (ed) Thermal spray: surface engineering via applied research. ASM International, Materials Park, OH, pp 237–244

    Google Scholar 

  7. Bandyopadhyay R, Nylén P (2003) A computational fluid dynamic analysis of gas and particle flow in flame spraying. J Therm Spray Technol 12(4):492–503

    Google Scholar 

  8. Pombo Rodriguez HRM, Paredes RSC, Calixto A, Wido SH (2007) Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surf Coat Technol 202:172–179

    Google Scholar 

  9. Panossian Z, Mariaca L, Morcillo M, Flores S, Rocha J, Pen JJ, Herrera F, Corvo F, Sanchez M, Rincon OT, Pridybailo G, Simancas J (2005) Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere. Surf Coat Technol 190:244–248

    Google Scholar 

  10. Paredes RSC, Amico SC, d’Oliveira ASCM (2006) The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf Coat Technol 200:3049–3055

    Google Scholar 

  11. Vijaya BM, Krishna Kumar R, Prabhakar O, Gowri Shankar N (1996) Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surf Coat Technol 79:276–288

    Google Scholar 

  12. Brantner HP, Pippan R, Prantl W (2003) Local and global fracture toughness of a flame sprayed molybdenum coating. J Therm Spray Technol 12(4):560–571

    Google Scholar 

  13. Laribi M, Vannes AB, Treheux D (2006) On a determination of wear resistance and adhesion of molybdenum, Cr–Ni and Cr–Mn steel coatings thermally sprayed on a 35CrMo4 steel. Surf Coat Technol 200:2704–2710

    Google Scholar 

  14. Lin L, Hanb K (1998) Optimization of surface properties by flame spray coating and boriding. Surf Coat Technol 106:100–105

    Google Scholar 

  15. Planche MP, Liao H, Normand B, Coddet C (2005) Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes. Surf Coat Technol 200:2465–2473

    Google Scholar 

  16. Navas C, Colaço R, de Damborenea J, Vilar R (2006) Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf Coat Technol 200:6854–6862

    Google Scholar 

  17. Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed co-based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997

    Google Scholar 

  18. Harsha S, Dwivedi DK, and Agarwal A Influence of CrC addition in Ni-Cr-Si-B flame sprayed coatings on microstructure, microhardness and wear behaviour. Int J Adv Manuf Technol DOI:10.1007/s00170-007-1072-2

  19. Harsha S, Dwivedi DK, Agrawal A (2007) Influence of WC addition in Co–Cr–W–Ni–C flame sprayed coatings on microstructure, microhardness and wear behaviour. Surf Coat Technol 201:5766–5775

    Google Scholar 

  20. Mesrati N, Ajhrourh H, Nguyen D, Treheux D (2000) Thermal spraying and adhesion of oxides onto graphite. J Therm Spray Technol 9(1):95–99

    Google Scholar 

  21. Barthel K, Rambert S, Siegmann S (2000) Microstructure and polarization resistance of thermally sprayed composite cathodes for solid oxide fuel cell use. J Therm Spray Technol 9(3):343–347

    Google Scholar 

  22. Jorge LF, Duarte TP, Maia R (2003) Development of coated ceramic components for the aluminium industry. J Therm Spray Technol 12(2):250–257

    Google Scholar 

  23. Liu CS, Huang JH, Yin S (2002) The influence of composition and process parameters on the microstructure of TiC-Fe coatings obtained by reactive flame spray process. J Mater Sci 37:5241–5245

    Google Scholar 

  24. Hui L, Huang J (2005) Reactive thermal spraying of TiC-Fe composite coating by using asphalt as carbonaceous precursor. J Mater Sci 40:4149–4151

    Google Scholar 

  25. Liu HY, Huang JH (2006) Reactive flame spraying of TiC–Fe cermet coating using asphalt as a carbonaceous precursor. Surf Coat Technol 200:5328–5333

    Google Scholar 

  26. Zhang G, Liao H, Yu H, Costil S, Mhaisalkar SG, Bordes J-M, Coddet C (2006) Deposition of PEEK coatings using a combined flame spraying–laser remelting process. Surf Coat Technol 201:243–249

    Google Scholar 

  27. Li JF, Li L, Stott FH (2004) Multi-layered surface coatings of refractory ceramics prepared by combined laser and flame spraying. Surf Coat Technol 180–181:500–505

    Google Scholar 

  28. Ivosevic M, Cairncross RA, Knight R (2007) Melting and degradation of nylon-11 particles during HVOF combustion spraying. J Appl Polym Sci 105(2):827–837

    Google Scholar 

  29. Gawne DT, Zhang T, Bao Y (2001) Heating effect of flame impingement on polymer coatings. In: Berndt C, Khor K, Lugscheider E (eds) Thermal spray 2001: new surfaces for a New millennium. ASM International, Materials Park, OH, pp 307–313

    Google Scholar 

  30. Ivosevic M, Coguill SL, Galbraith SL (2009) Polymer thermal spraying: a novel coating process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1078–1083

    Google Scholar 

  31. Sainz MA, Osendi MI, Miranzo P (2008) Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying. Surf Coat Technol 202:1712–1717

    Google Scholar 

  32. Masataka M, Kazumi K, Substrate for flame-sprayed tile, Japanese patent JP1192777, 02-08-1989

    Google Scholar 

  33. Koji N, Kunio H, Eiichi Y, Glass-coated metallic work piece, Japanese patent JP2011749, 16-01-1990

    Google Scholar 

  34. Hideki I, Shibakumaran U and Kazumasa G, Method for thermally spraying and grazing cement martial, Japanese patent JP3033084, 13-02-1991

    Google Scholar 

  35. Tatsuya N, Izozou K, Haruyuki M, Yasuhi S, Improved glaze application for coating and flame spraying and glaze, Japanese patent JP63277583, 15-11-1988

    Google Scholar 

  36. Lugsheider E, Remer P, Nyland A, Siking R (1995) Thermal spraying of Bio-active glass ceramics. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM International, Materials Park, OH, pp 583–587

    Google Scholar 

  37. Arcondéguy A, Grimaud A, Denoirjean A, Gasnier G, Huguet C, Pateyron B, Montavon G (2007) Flame-sprayed glaze coatings: effect of operating parameters and feedstock characteristics onto coating structures. J Therm Spray Technol 16(5–6):978–990

    Google Scholar 

  38. Zhang T, Qiu Z, Bao Y, Gawne GT, Zhang K (2000) Temperature profile and thermal stress analysis of plasma sprayed glass-composite coatings. In: Berndt CC (ed) Thermal spray: surface engineering via applied research. ASM International, Materials Park, OH, pp 355–361

    Google Scholar 

  39. Tikkanen J, Gross KA, Berndt CC, Pitkatnen V, Keskinen J, Raghu S, Rajala M, Karthikeyan J (1997) Characteristics of the liquid flame spray process. Surf Coat Technol 90:210–216

    Google Scholar 

  40. Gross KA, Tikkanen J, Keskinen J, Pitkänen V, Eerola M, Siikamaki R, Rajala M (1999) Liquid flame spraying for glass coloring. J Therm Spray Technol 8(4):583–589

    Google Scholar 

  41. Poirier T, Vardelle A, Elchinger MF, Vardelle M, Grimaud A, Vesteghem H (2003) Deposition of nanoparticle suspensions by aerosol flame spraying: model of the spray and impact processes. J Therm Spray Technol 12(3):393–402

    Google Scholar 

  42. Guan-Jun Y, Li C-J, Wang YY (2005) Phase formation of nano-TiO2 particles during flame spraying with liquid feedstock. J Therm Spray Technol 14(4):480–486

    Google Scholar 

  43. Guan-Jun Y, Li CJ, Huang XC, Li CX, Wang YY (2007) Influence of silver doping on photocatalytic activity of liquid-flame-sprayed-nanostructured TiO2 coating. J Therm Spray Technol 16(5–6):881–885

    Google Scholar 

  44. Hussary NA, Heberlein JVR (2007) Effect of system parameters on metal breakup and particle formation in the wire arc spray process. J Therm Spray Technol 16(1):140–152

    Google Scholar 

  45. Ishikawa K, Suzuki T, Tobe S, Kitamura Y (2001) Resistance of thermal-sprayed duplex coating composed of aluminum and 80ni-20cr alloy against aqueous corrosion. J Therm Spray Technol 10(3):520–525

    Google Scholar 

  46. Ishikawa K, Suzuki T, Kitamura Y, Tobe S (1999) Corrosion resistance of thermal sprayed titanium coatings in chloride solution. J Therm Spray Technol 8(2):273–278

    Google Scholar 

  47. Thorpe ML, Richter HJ (1992) A pragmatic analysis and comparison of HVOF processes. J Therm Spray Technol 1(2):161–170

    Google Scholar 

  48. Korpiola K, Hirvonen JP, Laas L, Rossi F (1997) The influence of the nozzle design on HVOF exit gas velocity and coating microstructure. J Therm Spray Technol 6(4):469–474

    Google Scholar 

  49. Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232

    Google Scholar 

  50. Tawfik HH, Zimmerman F (1997) Mathematical modeling of the gas and powder flow in HVOF systems. J Therm Spray Technol 6(3):345–352

    Google Scholar 

  51. Oberkampf WL, Talpallikar M (1996) Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch part1: numerical simulation. J Thermal Spray Technol 5(1):53–61

    Google Scholar 

  52. Oberkampf WL, Talpallikar M (1996) Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch part 2: computational results. J Thermal Spray Technol 5(1):62–68

    Google Scholar 

  53. Gu S, Eastwick CN, Simmons KA, McCartney DG (2001) Computational fluid dynamic modeling of gas flow characteristics in a high-velocity oxy-fuel thermal spray system. J Therm Spray Technol 10(3):461–469

    Google Scholar 

  54. Cheng D, Xu Q, Trapaga G, Lavernia EJ (2001) A numerical study of high-velocity oxygen fuel thermal spraying process. Part I: gas phase dynamics. Metallurg Mater Transact A 32A:1609–1620

    Google Scholar 

  55. Sakaki K, Shimizu Y (2001) Effect of the increase in the entrance convergent section length of the gun nozzle on the high-velocity oxygen fuel and cold spray process. J Therm Spray Technol 10(3):487–496

    Google Scholar 

  56. Katanoda H, Matsuoka T, Kuroda S, Kawakita J, Fukanuma H, Matsuo K (2005) Aerodynamic study on supersonic flows in high-velocity oxy-fuel thermal spray process. J Therm Sci 14(2):126–129

    Google Scholar 

  57. Dolatabadi A, Pershin V, Mostaghimi J (2005) New attachment for controlling gas flow in the HVOF process. J Therm Spray Technol 14(1):91–99

    Google Scholar 

  58. Katanoda H, Yamamoto H, Matsuo K (2006) Numerical simulation on supersonic flow in high velocity oxy fuel termal spray gun. J Therm Sci 15(1):65–70

    Google Scholar 

  59. Yuan X, Wang H, Hou G, Zha B (2006) Numerical modelling of a low temperature high velocity air fuel spraying process with injection of liquid and metal particles. J Therm Spray Technol 15(3):413–421

    Google Scholar 

  60. Li M, Christofides PD (2005) Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chem Eng Sci 60:3649–3669

    Google Scholar 

  61. Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, Lewis Research Center, Cleveland, OH, USA

    Google Scholar 

  62. Yang Y, Liao H, Coddet C (2002) Simulation and application of a HVOF process for MCrAlY thermal spraying. J Therm Spray Technol 11(1):36–43

    Google Scholar 

  63. Srivatsan VR, Dolatabadi A (2006) Simulation of particle-shock interaction in a high velocity oxygen fuel process. J Therm Spray Technol 15(4):481–487

    Google Scholar 

  64. Cheng D, Xu Q, Trapaga G, Lavernia EJ (2001) The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metallurg Mater Transact B 32B:525–535

    Google Scholar 

  65. Gu S, McCartney DG, Eastwick CN, Simmons K (2004) Numerical modeling of in-flight characteristics of Inconel 625 particles during high-velocity oxy-fuel thermal spraying. J Therm Spray Technol 13(2):200–213

    Google Scholar 

  66. Hanson TC, Hackett CM, Settles GS (2002) Independent control of HVOF particle velocity and temperature. J Therm Spray Technol 11(1):75–85

    Google Scholar 

  67. He J, Ice M, Lavernia E (2001) Particle melting behavior during high-velocity oxygen fuel thermal spraying. J Therm Spray Technol 10(1):83–93

    Google Scholar 

  68. Dobler K, Kreye H, Schwetzke R (2000) Oxidation of stainless steel in the high velocity oxy-fuel process. J Therm Spray Technol 9(3):407–413

    Google Scholar 

  69. Hackett CM, Settles GS (1995) Research on HVOF gas shrouding for coating oxidation control. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM International, Materials Park OH, pp 21–29

    Google Scholar 

  70. Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, Kuroda S (2005) Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Therm Spray Technol 14(3):384–390

    Google Scholar 

  71. Schwetzke R, Kreye H (1999) Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems. J Therm Spray Technol 8(3):433–439

    Google Scholar 

  72. Browning JA (1992) Hypervelocity impact fusion-a technical note. J Therm Spray Technol 1(4):289–29

    Google Scholar 

  73. Browning JA (1999) Viewing the future of HVOF and HVAF thermal spraying. J Therm Spray Technol 8(3):351–356

    Google Scholar 

  74. Evdokimenko YI, Kisel VM, Kadyrov VK, Korol’ AA, Get’man OI (2001) High-velocity flame spraying of powder aluminium protective coatings. Powder Metallurg Metal Ceramics 40(3-4):121–126

    Google Scholar 

  75. Kawakita J, Kuroda S, Fukushima T, Katanoda H, Matsuo K, Fukanuma H (2006) Dense titanium coatings by modified HVOF spraying. Surf Coat Technol 201:1250–1255

    Google Scholar 

  76. Wu T, Kuroda S, Kawakita J, Katanoga K, Reed R (2006) Processing and properties of titanium coatings produced by warm spraying. In: Marple B et al (eds) Thermal spray: building on 100 years of success. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  77. Trompetter W, Hyland M, McGrouther D, Munroe P, Markwitz A (2006) Effect of substrate hardness on splat morphology in high-velocity thermal spray coatings. J Therm Spray Technol 15(4):663–669

    Google Scholar 

  78. Kuroda S, Tashiro Y, Yumoto H, Taira S, Fukanuma H, Tobe S (2001) Peening action and residual stresses in high-velocity oxygen fuel thermal spraying of 316L stainless steel. J Therm Spray Technol 10(2):367–374

    Google Scholar 

  79. Totemeier TC, Wright RN, Swank WD (2002) Microstructure and stresses in HVOF sprayed iron aluminide coatings. J Therm Spray Technol 11(3):400–408

    Google Scholar 

  80. Totemeier TC, Wright RN, Swank WD (2004) Residual stresses in high-velocity oxy-fuel metallic coatings. Metallurg Mater Transact A 35A:1807–1814

    Google Scholar 

  81. Lima CRC, Nin J, Guilemany JM (2006) Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the Modified Layer Removal Method (MLRM). Surf Coat Technol 200:5963–5972

    Google Scholar 

  82. Yilbas BS, Arif AFM (2007) Residual stress analysis for HVOF diamalloy 1005 coating on Ti–6Al–4V alloy. Surf Coat Technol 202:559–568

    Google Scholar 

  83. Sidhu TS, Prakash S, Agrawal RD (2005) Science for production studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823

    Google Scholar 

  84. Wielage B, Wank A, Pokhmurska H, Grund T, Rupprecht C, Reisel G, Friesen E (2006) Development and trends in HVOF spraying technology. Surf Coat Technol 201:2032–2037

    Google Scholar 

  85. Neiser RA, Brockmann JE, O’Hern TJ, Dyhkuizen RC, Smith MF, Roemer TJ, Teets RE (1995) Wire melting and droplet atomization in a HVOF jet. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, OH, pp 99–104

    Google Scholar 

  86. Lopez AR, Hassan B, Oberkampf WL, Neiser RA, Roemer TJ (1998) Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen fuel (HVOF) thermal spray torch. J Therm Spray Technol 7(3):374–382

    Google Scholar 

  87. Neiser RA, Smith MF, Dykhuizen RC (1998) Oxidation in wire HVOF-sprayed steel. J Therm Spray Technol 7(4):537–545

    Google Scholar 

  88. Hassan B, Lopez AR, Oberkampf WL (1998) Computational analysis of a three-dimensional high-velocity oxygen fuel (HVOF) thermal spray torch. J Therm Spray Technol 7(1):71–77

    Google Scholar 

  89. Modi SC, Calla E (2001) A study of high-velocity combustion wire molybdenum coatings. J Therm Spray Technol 10(3):480–486

    Google Scholar 

  90. Edrisy A, Perry T, Alpas AT (2005) Wear mechanism maps for thermal-spray steel coatings. Metallurg Mater Transact 36A:2737–2750

    Google Scholar 

  91. Sidhu TS, Prakash S, Agrawal RD (2006) Characterisation of NiCr wire coatings on Ni- and Fe-based superalloys by the HVOF process. Surf Coat Technol 200:5542–5549

    Google Scholar 

  92. Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Technol 15(3):387–399

    Google Scholar 

  93. Stanisic J, Kosikowski D, Mohanty PS (2006) High-speed visualization and plume characterization of the hybrid spray process. J Therm Spray Technol 15(4):750–758

    Google Scholar 

  94. Chow R, Decker TA, Gansert RV, Gansert D, Lee D (2003) Properties of aluminium deposited by a HVOF process. J Therm Spray Technol 12(2):208–213

    Google Scholar 

  95. Totemeier TC, Wright RN, Swank WD (2003) Mechanical and physical properties of high-velocity oxy-fuel–sprayed iron aluminide coatings. Metallurg Mater Transact A 34A:2223–2231

    Google Scholar 

  96. Higuera V, Belzunce FJ, Carriles A, Poveda S (2002) Influence of the thermal-spray procedure on the properties of a nickel-chromium coating. J Mater Sci 37:649–654

    Google Scholar 

  97. Trompetter WJ, Hyland M, Munroe P, Markwitz A (2005) Evidence of mechanical interlocking of NiCr particles thermally sprayed onto Al substrates. J Therm Spray Technol 14(4):524–529

    Google Scholar 

  98. Chang-Jiu L, Wang YY (2002) Effect of particle state on the adhesive strength of HVOF sprayed metallic coating. J Therm Spray Technol 11(4):523–529

    Google Scholar 

  99. Yuuzou K (2007) Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers. J Therm Spray Technol 16(2):202–213

    Google Scholar 

  100. Yilbas BS, Khalid M, Abdul-Aleem BJ (2003) Corrosion behavior of HVOF coated sheets. J Therm Spray Technol 12(4):572–575

    Google Scholar 

  101. Young-myung Y, Liao H, Coddet C (2002) Simulation and application of a HVOF process for MCrAlY thermal spraying. J Therm Spray Technol 11(1):36–43

    Google Scholar 

  102. Lima CRC, Guilemany JM (2007) Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf Coat Technol 201:4694–4701

    Google Scholar 

  103. Chen WR, Wua X, Marple BR, Nagy DR, Patnaik PC (2008) TGO growth behaviour in TBCs with APS and HVOF bond coats. Surf Coat Technol 202(12):2677–2683

    Google Scholar 

  104. Brandl W, Toma D, Kruger J, Grabke HJ, Matthäus G (1997) The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf Coat Technol 93–95:21–26

    Google Scholar 

  105. Scrivani A, Bardi U, Carrafiello L, Lavacchi A, Niccolai F et al (2003) A comparative study of high velocity oxygen fuel, vacuum plasma spray, and axial plasma spray for the deposition of CoNiCrAlY bond coat alloy. J Therm Spray Technol 12(4):504–507

    Google Scholar 

  106. Rajasekaran B, Mauer G, Vaßen R (2011) Enhanced characteristics of HVOF-sprayed MCrAlY Bond Coats for TBC applications. J Therm Spray Technol 20(6):1209–1216

    Google Scholar 

  107. Ni LY, Liu C, Huang H, Zhou CG (2011) Thermal cycling behavior of thermal barrier coatings with HVOF NiCrAlY bond coat. J Therm Spray Technol 20(5):1133–1138

    Google Scholar 

  108. Kwon J-Y, Lee J-H, Jung Y-G, Paik U (2006) Effect of bond coat nature and thickness on mechanical characteristic and contact damage of zirconia-based thermal barrier coatings. Surf Coat Technol 201:3483–3490

    Google Scholar 

  109. Lima CRC, Guilemany JM (1997) The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf Coat Technol 93–95:21–26

    Google Scholar 

  110. Richer P, Yandouzi M, Beauvais L, Jodoin B (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Technol 204:3962–3974

    Google Scholar 

  111. Fossati A, Di Ferdinando M, Lavacchi A, Bardi U, Giolli C (2010) Scrivani Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel. Surf Coat Technol 204:3723–3728

    Google Scholar 

  112. Jang H-J, Park D-H, Junga Y-G, Jang J-C, Choi S-C, Paik U (2006) Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surf Coat Technol 200:4355–4362

    Google Scholar 

  113. Yuan FH, Chen ZX, Huang ZW, Wang ZG, Zhu SJ (2008) Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats. Corros Sci 50:1608–1617

    Google Scholar 

  114. Kumar Ashok J, Boy RZ, Stephenson LD (2005) Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. J Therm Spray Technol 14(2):177–182

    Google Scholar 

  115. Hanshin C, Lee S, Kim B, Jo H, Lee C (2005) Effect of in-flight particle oxidation on the phase evolution of HVOF NiTiZrSiSn bulk amorphous coating. J Mater Sci 40:6121–6126

    Google Scholar 

  116. Dent AH, DePalo S, Sampath S (2002) Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co Cermets with different binder phase contents. J Therm Spray Technol 11(4):551–558

    Google Scholar 

  117. Ahmed R, Hadfield M (2002) Mechanisms of fatigue failure in thermal spray coatings. J Therm Spray Technol 11(4):551–558

    Google Scholar 

  118. Maria P, Zhao L, Zwick J, Bobzin K, Lugscheider E (2006) Investigation of HVOF spraying on magnesium alloys. Surf Coat Technol 201:3269–3274

    Google Scholar 

  119. Perry JM, Neville A, Hodgkiess T (2002) A comparison of the corrosion behavior of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ atomic force microscopy (AFM). J Therm Spray Technol 11(4):536–541

    Google Scholar 

  120. Deng C, Liu M, Wu C, Zhou K, Song J (2007) Impingement resistance of HVAF WC-based coatings. J Therm Spray Technol 16(5–6):604–609

    Google Scholar 

  121. Jacobs L, Hyland MM, De Bonte M (1999) Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings. J Therm Spray Technol 8(1):125–132

    Google Scholar 

  122. Jacobs L, Hyland MM, De Bonte M (1998) Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process. J Therm Spray Technol 7(2):213–218

    Google Scholar 

  123. Marple BR, Lima RS (2005) Process temperature/velocity-hardness-wear relationships for high-velocity oxyfuel sprayed nanostructured and conventional cermet coatings. Therm Spray Technol 14(1):67–76

    Google Scholar 

  124. Moskowitz L, Trelewicz K (1997) HVOF coatings for heavy-wear, high-impact applications. J Therm Spray Technol 6(3):294–299

    Google Scholar 

  125. Guilemany JM, Espallargas N, Suegama PH, Benedetti AV, Fernández J (2005) High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. J Therm Spray Technol 14(3):335–341

    Google Scholar 

  126. Gang-Chang J, Li CJ, Wang YY, Li WY (2007) Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 16(4):557–565

    Google Scholar 

  127. Matthews S, Hyland M, James B (2004) Long-yerm carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900°C. J Therm Spray Technol 13(4):526–536

    Google Scholar 

  128. Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al-Zn Alloy. J Therm Spray Technol 16(3):404–413

    Google Scholar 

  129. Horlock AJ, Sadeghian Z, McCartney DG, Shipway PH (2005) High-velocity oxyfuel reactive spraying of mechanically alloyed Ni-Ti-C powders. J Therm Spray Technol 14(1):77–84

    Google Scholar 

  130. Thiele S, Heimann RB, Berger L-M, Herrmann M, Nebelung M, Schnick T, Wielage B, Vuoristo P (2002) Microstructure and properties of thermally sprayed silicon nitride-based coatings. J Therm Spray Technol 11(2):218–225

    Google Scholar 

  131. Lima RS, Marple BR (2003) High weibull modulus HVOF Titania coatings. J Therm Spray Technol 12(2):240–249

    Google Scholar 

  132. Lima RS, Marple BR (2003) Optimized HVOF Titania coatings. J Therm Spray Technol 12(3):360–369

    Google Scholar 

  133. Stahr CC, Saaro S, Berger L-M, Dubsky´ J, Neufuss K, Hermann M (2006) Dependence of the stabilization of α-alumina on the spray process. J Therm Spray Technol 16(5–6):822–830

    Google Scholar 

  134. Dobbins TA, Knight R, Mayo MJ (2003) HVOF thermal spray deposited Y2O3-stabilized ZrO2 coatings for thermal barrier applications. J Therm Spray Technol 12(2):214–225

    Google Scholar 

  135. Petrovicova E, Knight R, Schadler LS, Twardowski TE (2000) Nylon 11/Silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J Appl Polym Sci 78:2272–2289

    Google Scholar 

  136. Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK (2005) Adhesive/cohesive properties of thermally sprayed functionally graded coatings for polymer matrix composites. J Therm Spray Technol 14(1):45–51

    Google Scholar 

  137. Jackson L, Ivosevic M, Knight R, Cairncross RA (2007) Sliding wear properties of HVOF thermally sprayed nylon-11 and nylon-11/ceramic composites on steel. J Therm Spray Technol 16(5–6):927–932

    Google Scholar 

  138. Aalamialeagha ME, Harris SJ, Emamighomi M (2003) Influence of the HVOF spraying process on the microstructure and corrosion behaviour of Ni-20%Cr coatings. J Mater Sci 38:4587–4596

    Google Scholar 

  139. Kawakitaa Jin, Isoyamab K, Kurodaa S, Yumoto H (2006) Effects of deformability of HVOF sprayed copper particles on the density of resultant coatings. Surf Coat Technol 200:4414–4423

    Google Scholar 

  140. Kawakitaa Jin, Kuroda S, Fukushima T, Kodama T (2005) Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless steel coatings by addition of molybdenum. J Therm Spray Technol 14(2):224–230

    Google Scholar 

  141. Totemeier TC (2005) Effect of high-velocity oxygen-fuel thermal spraying on the physical and mechanical properties of type 316 stainless steel. J Therm Spray Technol 14(3):369–372

    Google Scholar 

  142. Ashok Kumar J, Boy RZ, Stephenson LD (2005) Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. J Therm Spray Technol 14(2):177–183

    Google Scholar 

  143. Sundararajan T, Kuroda S, Abe F (2004) Effect of thermal spray on the microstructure and adhesive strength of high-velocity oxy-fuel–sprayed Ni-Cr coatings on 9Cr-1Mo steel. Metallurg Mater Transact A 35A:3187–3199

    Google Scholar 

  144. Sundararajan T, Kuroda S, Abe F (2004) Steam oxidation of 80Ni-20Cr high-velocity oxyfuel coatings on 9Cr-1Mo steel: diffusion-induced phase transformations in the substrate adjacent to the coating. Metallurg Mater Transact A 36A:2165–2174

    Google Scholar 

  145. Pant BK, Arya V, Mann BS (2007) Development of low-oxide MCrAlY coatings for gas turbine applications. J Therm Spray Technol 16(2):275–280

    Google Scholar 

  146. Kim HJ, Lim KM, Seong BG, Park CG (2001) Amorphous phase formation of Zr-based alloy coating by HVOF spraying process. J Mater Sci 36:49–54

    Google Scholar 

  147. Bolelli G, Lusvarghi L (2006) Heat treatment effects on the tribological performance of HVOF sprayed Co-Mo-Cr-Si coatings. J Therm Spray Technol 15(4):802–810

    Google Scholar 

  148. de Villiers LHL, Richter PW, Benson JM, Young PM (1998) Parameter Study of HP/HVOF Deposited WC-Co Coatings. Journal of Thermal Spray Technology 7(1):97–107

    Google Scholar 

  149. Otsubo F, Era H, Uchida T, Kishitake K (2000) Properties of Cr3C2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes. J Therm Spray Technol 9(4):499–504

    Google Scholar 

  150. Sidhu HS, Sidhu BS, Prakash S (2007) Hot corrosion behavior of hvof sprayed coatings on ASTM SA213-T11 Steel. J Therm Spray Technol 16(3):349–354

    Google Scholar 

  151. Bolelli G, Cannillo V, Lusvarghi L, Ricco S (2006) Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf Coat Technol 200:2995–3009

    Google Scholar 

  152. Yasunari I, Kuroda S, Kawakita J, Sakamoto Y, Takaya M (2007) Sliding wear properties of HVOF sprayed WC–20%Cr3C2–7%Ni cermet coatings. Surf Coat Technol 201:4718–4727

    Google Scholar 

  153. Maiti AK, Mukhopadhyay N, Raman R (2007) Effect of adding WC powder to the feedstock of WC–Co–Cr based HVOF coating and its impact on erosion and abrasion resistance. Surf Coat Technol 201:7781–7788

    Google Scholar 

  154. Sidhu TS, Prakash S, Agrawal RD (2006) Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. J Therm Spray Technol 15(4):811–816

    Google Scholar 

  155. Sidhu TS, Malik A, Prakash S, Agrawal RD (2007) Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys. J Therm Spray Technol 16(5–6):844–849

    Google Scholar 

  156. Marple BR, Voyer J (2001) Improved wear performance by the incorporation of solid lubricants during thermal spraying. J Therm Spray Technol 10(4):626–636

    Google Scholar 

  157. Wang Y (2004) Nano- and submicron-structured sulfide self-lubricating coatings produced by thermal spraying. Tribol Lett 17(2):165–168

    Google Scholar 

  158. Ozdemir I, Hamanaka I, Tsunekawa Y, Okumiya M (2005) In-process exothermic reaction in high-velocity oxyfuel and plasma spraying with SiO2/Ni/Al-Si-Mg composite powder. J Therm Spray Technol 14(3):321–329

    Google Scholar 

  159. Roberson JA, Crowe CT (1997) Engineering fluid dynamics, 6th edn. Wiley, New York, NY

    Google Scholar 

  160. Li M, Shi D, Christofides PD (2004) Diamond jet hybrid HVOF thermal spray: gas-phase and particle behaviour modelling and feed back control design. Ind Eng Chem Res 43:3632–3652

    Google Scholar 

  161. Li M, Shi D, Christofides PD (2004) Model-based estimation and control of particle velocity and melting in HVOF thermal spray. Chem Eng Sci 59:5647–5656

    Google Scholar 

  162. Kamnis S, Gu S (2006) Numerical modelling of propane combustion in a high velocity oxygen–fuel thermal spray gun. Chem Eng Proc 45:246–253

    Google Scholar 

  163. Furuhata T, Tanno S, Miura T, Ikeda Y, Nakajima T (1997) Performance of numerical spray combustion simulation. Energ Convers Manage 38(10–13):1111–1122

    Google Scholar 

  164. Glassman I (1977) Combustion. Academic, New York, NY

    Google Scholar 

  165. Kadyrov E, Kadyrov V (1995) Gas dynamical parameters of detonation powder spraying. J Therm Spray Technol 4(3):280–286

    Google Scholar 

  166. Kharlamov YA (2004) Gaseous pulse detonation spraying: current status, challenges, and future perspective. In: Lugsheider E (ed) ITSC 2008 : Thermal spray crossing borders. DVS, Düsseldorf, Germany, E-proceedings

    Google Scholar 

  167. Astakhov EA (2008) Controlling the properties of detonation-sprayed coatings: major aspects. Powder Metallurg Metal Ceramics 47(1–2):70–79

    Google Scholar 

  168. Roy GD, Frolov SM, Borisov AA, Netzer DW (2004) Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energ Combust Sci 30:545–672

    Google Scholar 

  169. Nikolaev YA, Vasil’ev AA, Ul’yanitskii BY (2003) Gas detonation and its application in engineering and technologies (review). Combust Explos Shock Waves 39(4):382–410

    Google Scholar 

  170. Wang T-G, Zhao S-S, Hua W-G, Gong J, Sun C (2009) Design of a separation device used in detonation gun spraying system and its effects on the performance of WC–Co coatings. Surf Coat Technol 203:1637–1644

    Google Scholar 

  171. Kadyrov E (1996) Gas-particle interaction in detonation spraying systems. J Therm Spray Technol 5(2):185–195

    Google Scholar 

  172. Gavrilenko TP, Nikolaev YA (2006) Limits of gaseous detonation spraying combustion. Explos Shock Waves 42(5):594–597

    Google Scholar 

  173. Gavrilenko TP, Nikolaev YA (2007) Calculation of detonation gas spraying combustion. Explos Shock Waves 43(6):724–731

    Google Scholar 

  174. Cannon JE, Alkam M, Butler PB (2008) Efficiency of pulsed detonation thermal spraying. J Therm Spray Technol 17(4):456–464

    Google Scholar 

  175. Ramadan K, Barry Butler P (2004) Analysis of particle dynamics and heat transfer in detonation thermal spraying systems. J Therm Spray Technol 13(2):248–264

    Google Scholar 

  176. Kim JH, Kim MC, Park CG (2003) Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surf Coat Technol 168:275–280

    Google Scholar 

  177. Rajasekaran B, Ganesh Sundara Raman S, Joshi SV, Sundararajan G (2006) Effect of detonation gun sprayed Cu–Ni–In coating on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. Surf Coat Technol 201:1548–1558

    Google Scholar 

  178. Ganesh Sundara Raman S, Rajasekaran B, Joshi SV, Sundararajan G (2007) Influence of substrate material on plain fatigue and fretting fatigue behavior of detonation gun sprayed Cu-Ni-In Coating. J Therm Spray Technol 16(4):571–579

    Google Scholar 

  179. Rajasekaran B, Ganesh Sundara Raman S, Rajasekaran B, Joshi SV, Sundararajan G (2008) Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading. Mater Sci Eng A 479:83–92

    Google Scholar 

  180. Oliker VE, Barabash MY, Grechishkin EF, Timofeeva II, Gridasova TY (2007) High-temperature air oxidation based on eutectic (β-NiAl + γ- and NiAl intermetallide. Powder Metallurg Metal Ceramics 46(3–4):175–181

    Google Scholar 

  181. Oliker VE, Pritulyak AA, Syrovatka VL, Grechishkin EF, Gridasova TY (2007) Formation and high-temperature oxidation of thermal-barrier coatings with Ti–Al–Cr binding layer. Powder Metallurg Metal Ceramics 46(9–10):483–491

    Google Scholar 

  182. Belzunce FJ, Higuera V, Poveda S, Carriles A (2002) High temperature of HFPD thermal-sprayed MCrAlY coatings in simulated gas turbine environments. J Therm Spray Technol 11(4):461–467

    Google Scholar 

  183. Yu-Juan Z, Sun XF, Guana HR, Hua ZQ (2002) 1050°C isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating. Surf Coat Technol 161:302–305

    Google Scholar 

  184. Taylor TA, Knapp JK (1995) Dispersion-strengthened Modified MCrAlY Coatings Produced by Reactive Deposition. Surf Coat Technol 76–77:34–40

    Google Scholar 

  185. Zhang YJ, Sun XF, Zhang YC, Jin T, Deng CG, Guan HR, Hu ZQ (2003) A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating. Mater Sci Eng A360:65–69

    Google Scholar 

  186. Ke PL, Wu YN, Wang QM, Gong J, Sun C, Wen LS (2005) Study on thermal barrier coatings deposited by detonation gun. Surf Coat Technol 200:2271–2276

    Google Scholar 

  187. Wu YN, Wang FH, Hua WG, Gong J, Sun C, Wen LS (2003) Oxidation behavior of thermal barrier coatings obtained by detonation spraying. Surf Coat Technol 166:189–194

    Google Scholar 

  188. Wu YN, Ke PL, Wang QM, Sun C, Wang FH (2004) High temperature properties of thermal barrier coatings obtained by detonation spraying. Corros Sci 46:2925–2935

    Google Scholar 

  189. Suresh BP, Basu B, Sundararajan G (2008) Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings. Acta Mater 56:5012–5026

    Google Scholar 

  190. Sundararajan G, Sen D, Sivakumar G (2005) The tribological behaviour of detonation sprayed coatings: the importance of coating process parameters. Wear 258:377–391

    Google Scholar 

  191. Murthy JKN, Venkataraman B (2006) Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surf Coat Technol 200:2642–2652

    Google Scholar 

  192. Wang T-G, Zhao S-S, Hua W-G, Li J-B, Gong J, Sun C (2010) Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC–Co coatings. Mater Sci Eng A 527(3):454–461

    Google Scholar 

  193. Park SY, Kim MC, Park CG (2007) Mechanical properties and microstructure evolution of the nano WC–Co coatings fabricated by detonation gun spraying with post heat treatment. Mater Sci Eng A 449–451:894–897

    Google Scholar 

  194. Du H, Hua W, Liu J, Gong J, Sun C, Wen L (2005) Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Mater Sci Eng A 408:202–210

    Google Scholar 

  195. Suresh BP, Rao DS, Rao GVN, Sundararajan G (2007) Effect of feedstock size and its distribution on the properties of detonation sprayed coatings. J Therm Spray Technol 16(2):281–290

    Google Scholar 

  196. Oliker VE, Grechishkin EF, Polotai VV, Loskutov MG, Timofeeva II (2004) Influence of the structure and properties of WC-Co alloy powders on the structure and wear resistance of detonation coatings. Powder Metallurg Metal Ceramics 43(5–6):258–264

    Google Scholar 

  197. Du H, Sun C, Hua WG, Zhang YS, Han Z, Wang TG, Gong J, Lee SW (2006) Fabrication and evaluation of D-gun sprayed WC–Co coating with self-lubricating property. Tribol Lett 23(3):261–266

    Google Scholar 

  198. Murthy JKN, Rao DS, Venkataraman B (2001) Effect of grinding on the erosion behaviour of a WC–Co–Cr coating deposited by HVOF and detonation gun spray processes. Wear 249:592–600

    Google Scholar 

  199. Li C-J, Ohmori A (1996) The lamellar structure of a detonation gun sprayed A12O3 coating. Surf Coat Technol 82:254–258

    Google Scholar 

  200. Saravanan P, Selvarajan V, Rao DS, Joshi SV, Sundararajan G (2000) Influence of process variables on the quality of detonation gun sprayed alumina coating. Surf Coat Technol 123:44–54

    Google Scholar 

  201. Niemi K, Vuoristo P, Mantyla T (1994) Properties of alumina-based coatings deposited by plasma spray and detonation gun spray processes. J Therm Spray Technol 3(2):99–203

    Google Scholar 

  202. Saravanan P, Selvarajan V, Srivastava MP, Rao DS, Joshi SV, Sundararajan G (2000) Study of plasma- and detonation gun-sprayed alumina coatings using taguchi experimental design. J Therm Spray Technol 9(4):505–512

    Google Scholar 

  203. Pogrebnyak AD, Tyurin YN, Ivanov YF, Kobzev AP, Kul’ment’eva OP, Il’yashenko MI (2000) Preparation and Investigation of the Structure and Properties of Al2O3 Plasma-Detonation Coatings. Tech Phys Lett 26(11):960–963

    Google Scholar 

  204. Sobiecki JR, Ewertowshi J, Babul T, Wierzchon T (2004) Properties of alumina coatings produced by gas-detonation method. Surf Coat Technol 180–181:556–560

    Google Scholar 

  205. Venkataraman R, Ravikumar B, Krishnamurthy R, Das DK (2006) A study on phase stability observed in as sprayed Alumina-13 wt.% Titania coatings grown by detonation gun and plasma spraying on low alloy steel substrates. Surf Coat Technol 201:3087–3095

    Google Scholar 

  206. Semenov SY, Cetegen BM (2002) Experiments and modeling of the deposition of nano-structured alumina–titania coatings by detonation waves. Mater Sci Eng A335:67–81

    Google Scholar 

  207. Sundararajan G, Sivakumar G, Sen D, Srinivasa Rao D, Ravichandra G (2010) The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings. Int J Refract Metals Hard Mater 28:71–81

    Google Scholar 

  208. Du H, Sun C, Hua W, Wang T, Gong J, Jiang X, Wohn Lee S (2007) Structure, mechanical and sliding wear properties of WC–Co/MoS2–Ni coatings by detonation gun spray. Mater Sci Eng A 445–446:122–134

    Google Scholar 

  209. Wang J, Li Zhang B, Sun YZ (2000) Study of the Cr3C2-NiCr detonation spray coating. Surf Coat Technol 130:69–73

    Google Scholar 

  210. Sundararajan G, Sivakumar G, Sen D, Srinivasa Rao D, Ravichandra G (2010) The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings, Int. J Refract Metals Hard Mater 28:71–81

    Google Scholar 

  211. Kamal S, Jayaganthan R, Prakash S, Kumar S (2008) Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900◦C. J Alloys Compd 463:358–372

    Google Scholar 

  212. Kamal S, Jayaganthan R, Prakash S (2009) High temperature oxidation studies of detonation-gun-sprayed Cr3C2–NiCr coating on Fe- and Ni-based superalloys in air under cyclic condition at 900◦C. J Alloys Compd 472:378–389

    Google Scholar 

  213. Wang J, Sun B, Guo Q, Nishio M, Ogawa H (2002) Wear resistance of a detonation spray coating. J Therm Spray Technol 11(2):261–265

    Google Scholar 

  214. Jun W, Sun B, Guo Q, Nishio M, Ogawa H (2002) Wear resistance of a Cr3C2-NiCr detonation spray coating. J Therm Spray Technol 11(2):261–265

    Google Scholar 

  215. Murthy JKN, Bysakh S, Gopinath K, Venkataraman B (2007) Microstructure dependent erosion in Cr3C2–20(NiCr) coating deposited by a detonation gun. Surf Coat Technol 202:1–12

    Google Scholar 

  216. Wood RJK, Mellor BG, Binfield ML (1997) Binfield, Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear 211:70–83

    Google Scholar 

  217. Manish R (2002) Dynamic hardness detonation sprayed WC-Co coatings. J Therm Spray Technol 11(3):393–399

    Google Scholar 

  218. Oliker VE, Sirovatka VL, Timofeeva II, Gridasova TY, Hrechyshkin YF (2006) Formation of detonation coatings based on titanium aluminide alloys and aluminium titanate ceramic sprayed from mechanically alloyed powders Ti—Al. Surf Coat Technol 200:3573–3581

    Google Scholar 

  219. Tillmann W, Vogli E, Nebel J (2007) Development of detonation flame sprayed cu-base coatings containing large ceramic particles. J Therm Spray Technol 16(5–6):751–758

    Google Scholar 

  220. Astakhov EA, Mits IV, Kaplina GS, Kokorina NN, Kil’dii AI (2005) Study of the process of phase formation during detonation spraying of composite powders of the FeTi − SiC system. Powder Metallurg Metal Ceramics 44(1–2):55–59

    Google Scholar 

  221. Oliker VE, Sirovatka VL, Timofeeva II, Grechishkin EF, Gridasova TY (2005) Effects of properties of titanium aluminide powders and detonation spraying conditions on phase and structure formation in coatings. Powder Metallurg Metal Ceramics 44(9–10):472–480

    Google Scholar 

  222. Filimonov VY, Yakovlev VI, Korchagin MA, Loginova MV, Semenchina AS, Afanas’ev AV (2008) Structure formation during gas-detonation spraying of coatings from composite powders TiAl3 and Ni3Al. Combust Explos Shock Waves 44(5):591–596

    Google Scholar 

  223. Podchernyaeva IA, Shchepetov VV, Panasyuk AD, Gromenko VY, Yurechko DV, Katashinskii VP (2003) Refractory and ceramic materials structure and properties of wear-resistant detonation coatings based on titanium carbonitride. Powder Metallurg Metal Ceramics 42(9–10):497–502

    Google Scholar 

  224. Zhu JL, Huang JH, Wang HT, Xu JL, Zhao XK, Zhang H (2008) In-situ synthesis and microstructure of TiC–Fe36Ni composite coatings by reactive detonation-gun spraying. Mater Lett 62:2009–2012

    Google Scholar 

  225. Yang G, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460

    Google Scholar 

  226. Gao Y, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460

    Google Scholar 

  227. Senderowski C, Bojar Z (2008) Gas detonation spray forming of Fe–Al coatings in the presence of interlayer. Surf Coat Technol 202:3538–3548

    Google Scholar 

  228. Senderowski C, Bojar Z (2009) Influence of detonation gun spraying conditions on the quality of Fe-Al intermetallic protective coatings in the presence of NiAl and NiCr interlayers. J Therm Spray Technol 18(3):435–447

    Google Scholar 

  229. Min’kov DV, Lakunin VY, Kartashov ST, Bashkirov OM, Ivanov AS, Kasatkin AV, Min’kov MD (2008) Restoration of drying cylinders on spinning machines by gas detonation spraying. Fibre Chem 40(6):545–547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

a :

Sound velocity, \( a=\sqrt{\frac{\gamma .p}{\rho_{\mathrm{g}}}} \) (m/s)

A :

Oxidizer volume or mass (m3 or kg)

A i :

Is the cross-sectional area perpendicular to the flow direction (m2)

A t :

Throat area (m2)

D :

Detonation wave velocity (m/s)

F :

Fuel volume or mass (m3 or kg)

F/A :

Ratio of fuel to oxidizer number of moles

h i :

Enthalpy (J/kg)

\( {m}_{{\mathrm{O}}_2}^{{}^{\circ}} \) :

Oxygen gas feeding flow rate (kg/s)

M :

Mach number, ratio of gas velocity to the local sound velocity

p :

Pressure (Pa)

p t :

Gas pressure at the throat (Pa)

P F :

Power dissipated in the flame (kW)

q :

Chemical energy release at constant pressure (J/kg)

Q o :

Specific energy of detonation (J)

R :

Specific perfect gas constant (J/K kg)

R u :

Universal perfect gas constant (8.32 J/K mol)

R′:

Equivalence ratio or richness: R′ = (F/A)/(F/A)stoichiometry

t c :

Detonation cycle duration time (s)

T g :

Gas temperature (K)

T m :

Melting temperature (K)

T p :

Particle temperature (K)

T t :

Temperature at the throat (K)

u b :

Burned gas velocity with respect to the detonation wave front (m/s)

u u :

Unburned gas feeding velocity (m/s)

u u − u b :

Velocity of the burned gases with respect to the D-gun wall (m/s)

Δt i :

Characteristic time intervals of a detonation (s)

ϕ :

Dummy variable

ϕ′:

Time- (or Reynolds) averaged dumb variable

ϕ″:

Density-averaged dumb variable

γ :

Specific heats ratio

ρ g :

Gas mass density (kg/m3)

ρ p :

Particle mass density (kg/m3)

ρ t :

Gas mass density at the throat (kg/m3)

b:

Burned gases (in the immediate vicinity behind the front)

g:

Gas

p:

Particle

t:

Throat

u:

Unburned gas (before the detonation wave front)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Combustion Spraying Systems. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_5

Download citation

Publish with us

Policies and ethics