Skip to main content

Leukoencephalopathy due to Complex II Deficiency and Bi-Allelic SDHB Mutations: Further Cases and Implications for Genetic Counselling

  • Case Report
  • Chapter
  • First Online:
JIMD Reports, Volume 33

Abstract

Isolated complex II deficiency is a rare cause of mitochondrial disease and bi-allelic mutations in SDHB have been identified in only a few patients with complex II deficiency and a progressive neurological phenotype with onset in infancy. On the other hand, heterozygous SDHB mutations are a well-known cause of familial paraganglioma/pheochromocytoma and renal cell cancer. Here, we describe two additional patients with respiratory chain deficiency due to bi-allelic SDHB mutations. The patients’ clinical, neuroradiological, and biochemical phenotype is discussed according to current knowledge on complex II and SDHB deficiency and is well in line with previously described cases, thus confirming the specific neuroradiological presentation of complex II deficiency that recently has emerged. The patients’ genotype revealed one novel SDHB mutation, and one SDHB mutation, which previously has been described in heterozygous form in patients with familial paraganglioma/pheochromocytoma and/or renal cell cancer. This is only the second example in the literature where one specific SDHx mutation is associated with both recessive mitochondrial disease in one patient and familial paraganglioma/pheochromocytoma in others. Due to uncertainties regarding penetrance of different heterozygous SDHB mutations, we argue that all heterozygous SDHB mutation carriers identified in relation to SDHB-related leukoencephalopathy should be referred to relevant surveillance programs for paraganglioma/pheochromocytoma and renal cell cancer. The diagnosis of complex II deficiency due to SDHB mutations therefore raises implications for genetic counselling that go beyond the recurrence risk in the family according to an autosomal recessive inheritance.

Competing interests: None declared

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alston CL, Davison JE, Meloni F et al (2012) Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J Med Genet 49:569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amar L, Bertherat J, Baudin E et al (2005) Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 23:8812–8818

    Article  CAS  PubMed  Google Scholar 

  • Bricout M, Grevent D, Lebre AS et al (2014) Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet 51:429–435

    Article  CAS  PubMed  Google Scholar 

  • Brockmann K, Bjornstad A, Dechent P et al (2002) Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol 52:38–46

    Article  CAS  PubMed  Google Scholar 

  • Cerecer-Gil NY, Figuera LE, Llamas FJ et al (2010) Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma. Clin Cancer Res 16:4148–4154

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Schon EA, Carelli V, Hirano M (2013) The clinical maze of mitochondrial neurology. Nat Rev Neurol 9:429–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghezzi D, Goffrini P, Uziel G et al (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41:654–656

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AC, Bhatia P, Vento JM (2013) Mitochondrial disease in childhood: nuclear encoded. Neurotherapeutics 10:212–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helman G, Caldovic L, Whitehead MT et al (2015) Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann Neurol 79(3):379–386

    Article  Google Scholar 

  • Jackson CB, Nuoffer JM, Hahn D et al (2014) Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J Med Genet 51:170–175

    Article  CAS  PubMed  Google Scholar 

  • Jain-Ghai S, Cameron JM, Al Maawali A et al (2013) Complex II deficiency – a case report and review of the literature. Am J Med Genet A 161A:285–294

    Article  PubMed  Google Scholar 

  • Kunst HP, Rutten MH, de Monnink JP et al (2011) SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 17:247–254

    Article  CAS  PubMed  Google Scholar 

  • Larsen S, Nielsen J, Hansen CN et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morato L, Bertini E, Verrigni D et al (2014) Mitochondrial dysfunction in central nervous system white matter disorders. Glia 62:1878–1894

    Article  PubMed  Google Scholar 

  • Neumann HP, Pawlu C, Peczkowska M et al (2004) Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292:943–951

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard E, Hansen FJ, Sorensen N et al (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853–861

    Article  PubMed  Google Scholar 

  • Ostergaard E, Duno M, Batbayli M, Vilhelmsen K, Rosenberg T (2011) A novel MERTK deletion is a common founder mutation in the Faroe Islands and is responsible for a high proportion of retinitis pigmentosa cases. Mol Vis 17:1485–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh S, Bernard G, Leventer RJ et al (2015) A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab 114:501–515

    Article  CAS  PubMed  Google Scholar 

  • Peterson LA, Litzendorf M, Ringel MD, Vaccaro PS (2014) SDHB gene mutation in a carotid body paraganglioma: case report and review of the paraganglioma syndromes. Ann Vasc Surg 28:1321 e9–1321 e12

    Article  Google Scholar 

  • Renkema GH, Wortmann SB, Smeets RJ et al (2015) SDHA mutations causing a multisystem mitochondrial disease: novel mutations and genetic overlap with hereditary tumors. Eur J Hum Genet 23:202–209

    Article  CAS  PubMed  Google Scholar 

  • Ricketts CJ, Forman JR, Rattenberry E et al (2010) Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat 31:41–51

    Article  CAS  PubMed  Google Scholar 

  • Ricketts CJ, Shuch B, Vocke CD et al (2012) Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 188:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Rijken JA, Niemeijer ND, Corssmit EP et al (2016) Low penetrance of paraganglioma and pheochromocytoma in an extended kindred with a germline SDHB exon 3 deletion. Clin Genet 89:128–132

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Winge DR, Schiffman JD (2010) Succinate dehydrogenase – assembly, regulation and role in human disease. Mitochondrion 10:393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavi F, Milne RL, Anda E et al (2010) Are we overestimating the penetrance of mutations in SDHB? Hum Mutat 31:761–762

    Article  PubMed  Google Scholar 

  • Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72:750–759

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofou K, Kollberg G, Holmstrom M et al (2015) Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genomic Med 3:59–68

    Article  CAS  PubMed  Google Scholar 

  • Tulinius MH, Holme E, Kristiansson B, Larsson NG, Oldfors A (1991) Mitochondrial encephalomyopathies in childhood. I. Biochemical and morphologic investigations. J Pediatr 119:242–250

    Article  CAS  PubMed  Google Scholar 

  • Welander J, Soderkvist P, Gimm O (2011) Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 18:R253–R276

    Article  CAS  PubMed  Google Scholar 

  • Wong LJ (2012) Mitochondrial syndromes with leukoencephalopathies. Semin Neurol 32:55–61

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Swedish Research Council (AO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsebet Østergaard .

Editor information

Editors and Affiliations

Additional information

Communicated by: William Ross Wilcox, MD, PhD

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Respiratory rates and enzyme activities in muscle and fibroblasts of patient 1 and 2 (XLSX 42 kb)

Appendices

Synopsis

Diagnosing leukoencephalopathy due to complex II deficiency and bi-allelic SDHx mutations has important implications for genetic counseling going beyond the recurrence risk in the family.

Author Contributions

S.G., N.D., and E.Ø. have planned the work; all authors have contributed to the evaluation of the patients, including analysis and interpretation of clinical, neuroradiological, biochemical, histological, and molecular results; all authors have contributed pertinent aspects to the reporting of this work.

Sabine Grønborg serves as a guarantor for the manuscript.

Conflict of Interest

Sabine Grønborg, Niklas Darin, Maria J. Miranda, Bodil Damgaard, Jorge Asin Cayuela, Anders Oldfors, Gittan Kollberg, Thomas V.O. Hansen, Kirstine Ravn, Flemming Wibrand, and Elsebet Østergaard declare that they have no conflict of interest.

For this Case Report ethics approval was not required at the participating authors’ institutions.

The patients’ families have given informed consent for the publication of these case reports.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grønborg, S. et al. (2016). Leukoencephalopathy due to Complex II Deficiency and Bi-Allelic SDHB Mutations: Further Cases and Implications for Genetic Counselling. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 33. JIMD Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2016_582

Download citation

  • DOI: https://doi.org/10.1007/8904_2016_582

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55011-3

  • Online ISBN: 978-3-662-55012-0

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics